Advertisement

Two stream ion acoustic wave instability in warm dense plasmas

  • M. MohammadnejadEmail author
  • M. Akbari-Moghanjoughi
Original Article
  • 24 Downloads

Abstract

In this study we investigate the two-ion stream instability of plasma with a generalized Fermi-Dirac equation of state (EoS) for electron fluid. We use a hydrodynamic set of evolution equations for electron-ion plasma in order to obtain the linearized set of equations from which the dispersion relation of the plasma is obtained in the presence of ion acoustic wave instability. It is remarked that changes in the electron plasma fluid parameters such as the chemical potential and electron fluid temperature have fundamental effects on the growth rate of ion acoustic waves instability. It is however found that the plasma degeneracy has rather more significant effect on the two stream instability phenomenon. The generalized equation of state of electrons used in this research is valid for a wide density-temperature regimes of plasmas relevant to both laboratory as well as astrophysical environments including high-energy density fusion plasmas and fully degenerate compact stellar plasmas. We believe that using such a wide scope of plasma EoS provides a broader view of underlying physical mechanisms in plasma dynamics and instabilities and better understanding of astrophysical harsh plasma environments.

Keywords

Ion stream instability Dense plasma 

Notes

References

  1. Akbari-Moghanjoughi, M.: Phys. Plasmas 21, 053301 (2014).  https://doi.org/10.1063/1.4879030 ADSCrossRefGoogle Scholar
  2. Akbari-Moghanjoughi, M.: Phys. Plasmas 24, 082108 (2017).  https://doi.org/10.1063/1.4990458 ADSCrossRefGoogle Scholar
  3. Akbari-Moghanjoughi, M., Mohammadnejad, M., Esfandyari-Kalejahi, A.: Astrophys. Space Sci. 361, 307 (2016).  https://doi.org/10.1007/s10509-016-2889-7 ADSCrossRefGoogle Scholar
  4. Aymerich-Humet, X., Serra-Mestres, F., Millán, J.: J. Appl. Phys. 54, 2850 (1983).  https://doi.org/10.1063/1.332276 ADSCrossRefGoogle Scholar
  5. Baeva, T., Gordienko, S., Pukhov, A.: Phys. Rev. E 74, 046404 (2006) ADSCrossRefGoogle Scholar
  6. Bobin, J.L., Decroisette, M., Meyer, B., Vitel, Y.: Phys. Rev. Lett. 30, 594 (1973) ADSCrossRefGoogle Scholar
  7. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. University of Chicago Press, Chicago (1939) zbMATHGoogle Scholar
  8. Chandrasekhar, S.: Science 226, 4674 (1984) CrossRefGoogle Scholar
  9. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plenum Press, New York (1984) CrossRefGoogle Scholar
  10. Chen, H., Gao, X., Lu, Q., Wang, S.: Astrophys. J. 859, 120 (2018) ADSCrossRefGoogle Scholar
  11. Fajans, J., Gilson, E., Friedland, L.: Phys. Rev. Lett. 82, 4444 (1999) ADSCrossRefGoogle Scholar
  12. Gao, X., Lu, Q., Bortnik, J., Li, W., Chen, L., Wang, S.: Geophys. Res. Lett. 43, 2343 (2016) ADSCrossRefGoogle Scholar
  13. Gao, X., Ke, Y.G., Lu, Q.M., Chen, L.J., Wang, S.: Geophys. Res. Lett. 44, 618 (2017) ADSCrossRefGoogle Scholar
  14. Goossens, M.: An Introduction to Plasma Astrophysics and Magnetohydrodynamics. Astrophysics and Space Science Library (2003). ISBN 978-1402014291 CrossRefGoogle Scholar
  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980) zbMATHGoogle Scholar
  16. Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Physics and Chemistry in Space. Springer, Berlin (1975) CrossRefGoogle Scholar
  17. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill, New York (1973) CrossRefGoogle Scholar
  18. Lu, Q., Wang, L., Zhou, Y., Wang, S.: Chin. Phys. Lett. 21, 129 (2004) ADSCrossRefGoogle Scholar
  19. Lu, Q., Lembege, B., Tao, J.B., Wang, S.: J. Geophys. Res. 113, A11219 (2008) ADSGoogle Scholar
  20. Lu, Q., Zhou, L., Wang, S.: J. Geophys. Res. 115, A02213 (2010) ADSGoogle Scholar
  21. Miralles, J.A., Van Riper, K.A.: Astrophys. J. Suppl. 105, 407 (1996) ADSCrossRefGoogle Scholar
  22. Montgomery, D., Joyce, G., Sugihara, R.: Plasma Phys. 10, 681 (1968) ADSCrossRefGoogle Scholar
  23. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. LNS. Cornell University Press, Ithaca (1983) CrossRefGoogle Scholar
  24. Shimadae, M., et al.: Nucl. Fusion 47, 099801 (2007).  https://doi.org/10.1088/0029-5515/47/6/S01 CrossRefGoogle Scholar
  25. Shukla, P.K., Brodin, G., Marklund, M., Stenflo, L.: Phys. Plasmas 15, 082305 (2008).  https://doi.org/10.1063/1.2970098 ADSCrossRefGoogle Scholar
  26. Stenflo, L., Yu, M.Y., Shukla, P.K.: Phys. Fluids 16, 450 (1973).  https://doi.org/10.1063/1.1694361 ADSCrossRefGoogle Scholar
  27. Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D.: Phys. Plasmas 1, 1626 (1994).  https://doi.org/10.1063/1.870664 ADSCrossRefGoogle Scholar
  28. Van Horn, H.M.: Astrophys. J. 151, 227 (1968) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations