Advertisement

Dust acoustic solitons in a dusty plasma with Cairns–Gurevich distributed ions

  • Mohamed Ouazene
  • Rabia AmourEmail author
Original Article
  • 21 Downloads

Abstract

The problem of dust acoustic solitons is addressed in an unmagnetized collisionless dusty plasma with ions satisfying a Cairns–Gurevich distribution. A new type of density that describes, simultaneously, the evolution of the energetic ions and those trapped in the plasma potential well is outlined. Both highly and weakly nonlinear waves are investigated by deriving the Sagdeev potential for the large amplitude limit, and establishing the nonlinear partial differential equations (mK–dV equation) for the small but finite amplitude limit. It is shown that the effect of the nonthermal ion trapping on DA waves can be quite important. In particular, an increase of nonthermal character of ions following the Cairns–Gurevich distribution lead to an increase of the main quantities (amplitude and width) of dust acoustic solitons. Our investigation will be helpful in understanding the nonlinear DA waves in the presence of nonthermal trapped ions which may exist in space.

Keywords

Dust acoustic solitons Dusty plasmas Nonthermal trapped ions Cairns–Gurevich distribution 

Notes

References

  1. Abbasi, H., Hakimi, H.P.: Plasma Phys. Control. Fusion 50, 095007 (2008) ADSCrossRefGoogle Scholar
  2. Alinejad, H.: Astrophys. Space Sci. 325, 209 (2010) ADSCrossRefGoogle Scholar
  3. Alinejad, H.: Phys. Lett. A 375, 1005 (2011) ADSCrossRefGoogle Scholar
  4. Amour, R., Ait Gougam, L., Tribeche, M.: Physica A 43, 6 (2015) Google Scholar
  5. Aoutou, K., Tribeche, M., Zerguini, T.H.: Phys. Plasmas 16, 083701 (2009) ADSCrossRefGoogle Scholar
  6. Bara, D., Djebli, M., Benaceur-Domaz, D.: Laser Part. Beams 32, 391 (2014) ADSCrossRefGoogle Scholar
  7. Bostrom, R.: IEEE Trans. Plasma Sci. 20, 756 (1992) ADSCrossRefGoogle Scholar
  8. Cairns, R.A., Mamun, A.A., Bingham, R., Bostrom, R., Dendy, R.O., Nairn, C.M.C., Shukla, P.K.: Geophys. Res. Lett. 22, 2709 (1995) ADSCrossRefGoogle Scholar
  9. Cairns, R.A., Mamun, A.A., Bingham, R., Shukla, P.K.: Phys. Scr. T 63, 80 (1995) ADSGoogle Scholar
  10. Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic, New York (1972) Google Scholar
  11. Dovner, P.O., Eriksson, A.I., Bostrom, R., Holback, B.: Geophys. Res. Lett. 21, 1827 (1994) ADSCrossRefGoogle Scholar
  12. Futaana, Y., Machida, S., Saito, Y., Matsuoka, A., Hayakawa, H.: J. Geophys. Res. 108, 1025 (2003) CrossRefGoogle Scholar
  13. Goldman, M.V., Oppenheim, M.M., Newman, D.L.: Nonlinear Process. Geophys. 6, 221 (1999) ADSCrossRefGoogle Scholar
  14. Gurevich, A.V.: Sov. Phys. JETP 26, 575 (1968) ADSGoogle Scholar
  15. Hadjaz, I., Tribeche, M.: Astrophys. Space Sci. 351, 591 (2014) ADSCrossRefGoogle Scholar
  16. Jukui, X.: Chaos Solitons Fractals 18, 849 (2003) ADSCrossRefGoogle Scholar
  17. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Pergamon, Oxford (1981) Google Scholar
  18. Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E.M., Barabash, S.W., Liede, I., Koskinen, H.: Nature 341, 609 (1989) ADSCrossRefGoogle Scholar
  19. Maharaj, S., Pillay, S., Bharuthram, R., Reddy, R., Singh, S., Lakhina, G.: J. Plasma Phys. 72, 43 (2006) ADSCrossRefGoogle Scholar
  20. Mamun, A.A.: Phys. Rev. E 55, 1852 (1997) ADSCrossRefGoogle Scholar
  21. Mamun, A.A.: Eur. Phys. J. D 11, 143 (2000) ADSCrossRefGoogle Scholar
  22. Mamun, A.A., Cairns, R.A., Shukla, P.K.: Phys. Plasmas 3, 2610 (1996) ADSCrossRefGoogle Scholar
  23. Mendis, D.A., Rosenberg, M.: Annu. Rev. Astron. Astrophys. 32, 419 (1994) ADSCrossRefGoogle Scholar
  24. Merlino, R.L., Barkan, A., Thompson, C., D’Angelo, N.: Phys. Plasmas 5, 1607 (1998) ADSCrossRefGoogle Scholar
  25. Rao, N.N., Shukla, P.K., Yu, M.Y.: Planet. Space Sci. 38, 543 (1990) ADSCrossRefGoogle Scholar
  26. Sagdeev, R.Z.: Rev. Plasma Phys. 4, 23 (1966) ADSGoogle Scholar
  27. Schamel, H.: J. Plasma Phys. 9, 377 (1973) ADSCrossRefGoogle Scholar
  28. Shukla, P.K., Mamun, A.A.: Plasma Phys. Control. Fusion 44, 395 (2002a) ADSCrossRefGoogle Scholar
  29. Shukla, P.K., Mamun, A.A.: Introduction to Dusty Plasma Physics. Institute of Physics, Bristol (2002b) CrossRefGoogle Scholar
  30. Tribeche, M., Amour, R.: Phys. Plasmas 14, 103707 (2007) ADSCrossRefGoogle Scholar
  31. Tribeche, M., Djebarni, L., Schamel, H.: Phys. Lett. A 376, 3164 (2012) ADSCrossRefGoogle Scholar
  32. Verheest, F., Hellberg, M.A.: Phys. Plasmas 17, 102312 (2010) ADSCrossRefGoogle Scholar
  33. Verheest, F., Pillay, S.: Phys. Plasmas 15, 013703 (2008) ADSCrossRefGoogle Scholar
  34. Winter, J.: Phys. Plasmas 7, 3862 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Materials Sciences, Faculty of PhysicsUniversity of Bab-Ezzouar, USTHBAlgiersAlgeria
  2. 2.Plasma Physics Group, Theoretical Physics Laboratory, Faculty of PhysicsUniversity of Bab-Ezzouar, USTHBAlgiersAlgeria

Personalised recommendations