Advertisement

On the Manev spatial isosceles three-body problem

  • Daniel PaşcaEmail author
  • Cristina Stoica
Original Article
  • 22 Downloads

Abstract

We study the isosceles three-body problem with Manev interaction. Using a McGehee-type technique, we blow up the triple collision singularity into an invariant manifold, called the collision manifold, pasted into the phase space for all energy levels. We find that orbits tending to/ejecting from total collision are present for a large set of angular momenta. We also discover that as the angular momentum is increased, the collision manifold changes its topology.

Keywords

Spatial isosceles three-body problem Manev interaction Topology of the collision manifold Near-total collision flow 

Notes

Acknowledgements

CS was supported by an NSERC Discovery Grant.

References

  1. Alberti, A., Vidal, C.: New families of symmetric periodic solutions of the spatial anisotropic Manev problem. J. Math. Phys. 56(1), 012901 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. Arredondo, J.A., Pérez-Chavela, E., Stoica, C.: Dynamics in the Schwarzschild isosceles three body problem. J. Nonlinear Sci. 24, 997 (2014) ADSMathSciNetCrossRefGoogle Scholar
  3. Balsas, M.C., Guirao, J.L., Jiménez, E.S., Vera, J.A.: Qualitative analysis of the phase flow of a Manev system in a rotating reference frame. Int. J. Comput. Math. 86(10–11), 1817 (2009) MathSciNetCrossRefGoogle Scholar
  4. Barrabés, E., Cors, J.M., Vidal, C.: Spatial collinear restricted four-body problem with repulsive Manev potential. Celest. Mech. Dyn. Astron. 129(1–2), 153 (2017) ADSMathSciNetCrossRefGoogle Scholar
  5. Chenchiner, A.: Three body problem. Scholarpedia 2(10), 2111 (2007). www.scholarpedia.org/article/Three_body_problem ADSCrossRefGoogle Scholar
  6. Devaney, R.: Collision in the planar isosceles three body problem. Invent. Math. 60, 249 (1980) ADSMathSciNetCrossRefGoogle Scholar
  7. Diacu, F.: The planar isosceles problem for Maneff’s gravitational law. J. Math. Phys. 34, 5671 (1993) ADSMathSciNetCrossRefGoogle Scholar
  8. Diacu, F., Santoprete, M.: Nonintegrability and chaos in the anisotropic Manev problem. Physica D 156, 39 (2001) ADSMathSciNetCrossRefGoogle Scholar
  9. Diacu, F., Mingarelli, A., Mioc, V., Stoica, C.: The Manev two-body problem: quantitative and qualitative theory. In: Dynamical Systems and Applications. World Sci. Ser. Appl. Anal., vol. 4, p. 213 (1995) CrossRefGoogle Scholar
  10. Diacu, F., Mioc, V., Stoica, C.: Phase-space structure and regularization of Manev-type problems. Nonlinear Anal. 41, 1029 (2000) MathSciNetCrossRefGoogle Scholar
  11. Kyuldjiev, A., Gerdjikov, V., Marmo, G., Vilasi, G.: On the symmetries of the Manev problem and its real Hamiltonian form. In: Geometry, Integrability and Quantization, pp. 221–233. Softex, Sofia (2007) zbMATHGoogle Scholar
  12. Lemou, M., Méhats, F., Rigault, C.: Stable ground states and self-similar blow-up solutions for the gravitational Vlasov-Manev system. SIAM J. Math. Anal. 44(6), 3928 (2012) MathSciNetCrossRefGoogle Scholar
  13. Llibre, J., Makhlouf, A.: Periodic orbits of the spatial anisotropic Manev problem. J. Math. Phys. 53(12), 122903 (2012) ADSMathSciNetCrossRefGoogle Scholar
  14. Maneff, G.: Die Gravitation und das Prinzip von Wirkung und Gegenwirkung. Z. Phys. 31, 786 (1925) ADSCrossRefGoogle Scholar
  15. Maneff, G.: Le principe de la moindre action et la gravitation. C. R. Acad. Sci. Paris 190, 963 (1930) zbMATHGoogle Scholar
  16. Puta, M., Hedrea, I.C.: Some remarks on Manev’s Hamiltonian system. Tensor (N.S.) 66(1), 71 (2005) MathSciNetzbMATHGoogle Scholar
  17. Santoprete, M.: Symmetric periodic solutions of the anisotropic Manev problem. J. Math. Phys. 43(6), 3207 (2002) ADSMathSciNetCrossRefGoogle Scholar
  18. Shibayama, M., Yagasaki, K.: Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem. Nonlinearity 22(10), 2377 (2009) ADSMathSciNetCrossRefGoogle Scholar
  19. Stoica, C.: Particle systems with quasihomogeneous interaction. PhD Thesis, University of Victoria (2000) Google Scholar
  20. Stoica, C.: Classical scattering and block regularization for the homogeneous central field problem. Celest. Mech. Dyn. Astron. 83(3), 223 (2002) ADSMathSciNetCrossRefGoogle Scholar
  21. Stoica, C., Mioc, V.: The Schwarzschild problem in astrophysics. Astrophys. Space Sci. 249, 161 (1997) ADSMathSciNetCrossRefGoogle Scholar
  22. Szenkovits, F., Stoica, C., Mioc, V.: The Manev-type problems: a topological view. Mathematica 41(64)(1), 105 (1999) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of OradeaOradeaRomania
  2. 2.Department of MathematicsWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations