Advertisement

Parallelly generating halo orbit and its transfer trajectory in the full ephemeris model

  • Tao Wu
  • Xiao Pan
  • Ming XuEmail author
  • Qingyu Qu
  • Qianhui Xia
  • Shengli Liu
Original Article
  • 29 Downloads

Abstract

This paper employs a parallelized genetic algorithm in generating long-term bounded halo orbit and optimizing transfer trajectory from earth to it in the full ephemeris model. While the conventional gradient methods are lacking in precision as well as time-consuming, the parallel genetic algorithm (PGA) offers an access to large-scale computing based on the advanced hardware capability. A bounded halo orbit without any stationkeeping maneuver in five periods is obtained inside a defined pipe region in the ephemeris model. Transfer trajectory from earth to the obtained halo orbit is also investigated in this paper. By optimizing insertion impulses in the backward propagation and midcourse in the forward propagation, a transfer trajectory from earth to halo with least fuel consumption is generated. Furthermore, launch window is investigated based on the periodic variation about inclination of the injection point on the parking orbit. A mapping method from spatial space to \(i-\varOmega \) subspace is introduced for solving the time delay and position deviation problem. The numerical method employed in this paper is of high accuracy based on large-scale computing capability as well as efficient without any analytical initial guess, which makes it extensive in designing these unstable libration point orbits.

Keywords

Full ephemeris model parallel genetic algorithm Halo orbit Transfer trajectory 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11432001 and 11172024), the Fundamental Research Funds for the Central Universities, and the Foundation of Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies, Ministry of Education of China.

References

  1. Abdelkhalik, O., Mortari, D.: N-impulse orbit transfer using genetic algorithms. J. Spacecr. Rockets 44(2), 456–460 (2007).  https://doi.org/10.2514/1.24701 ADSCrossRefGoogle Scholar
  2. Corral, C., Jehn, R., Campagnola, S.: BepiColombo launch window design based on a phasing loop strategy. In: AIAA/AAS Astrodynamics Specialist Conference, AIAA 2004-5396 (2004).  https://doi.org/10.2514/MAST04. CrossRefGoogle Scholar
  3. Farquhar, R.W.: Halo-orbit and lunar-swingby missions of the 1990’s. Acta Astronaut. 24(91), 227–234 (1990).  https://doi.org/10.1016/0094-5765(91)90170-A ADSCrossRefGoogle Scholar
  4. Ford, E.B.: Parallel algorithm for solving Kepler’s equation on graphics processing units: application to analysis of Doppler exoplanet searches. New Astron. 14(4), 406–412 (2009).  https://doi.org/10.1016/j.newast.2008.12.001 ADSCrossRefGoogle Scholar
  5. Gómez, G., Masdemont, J.J., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998).  https://doi.org/10.1061/(ASCE)0893-1321(1998)11:2(59) MathSciNetCrossRefGoogle Scholar
  6. Howell, K.C.: Three-dimensional, periodic halo orbits in the restricted three-body problem. Celest. Mech. Dyn. Astron. 32(1), 53–71 (1984) CrossRefGoogle Scholar
  7. Jorba, À.: Numerical computation of the normal behaviour of invariant curves of n-dimensional maps. Nonlinearity 14(5), 943–976 (2001).  https://doi.org/10.1088/0951-7715/14/5/303 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Lara, M.: A Hopf variables view on the libration points dynamics. Celest. Mech. Dyn. Astron. 129(1), 285–306 (2017).  https://doi.org/10.1007/s10569-017-9778-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Lara, M., Perez, I., Lopez, R.: Higher order approximation to the Hill problem dynamics about the libration points. Commun. Nonlinear Sci. Numer. Simul. 59, 612–628 (2018).  https://doi.org/10.1016/j.cnsns.2017.12.007 ADSMathSciNetCrossRefGoogle Scholar
  10. Lian, Y., Gómez, G., Masdemont, J.J., et al.: A note on the dynamics around the Lagrange collinear points of the Earth–Moon system in a complete Solar System model. Celest. Mech. Dyn. Astron. 115(2), 185–211 (2018).  https://doi.org/10.1007/s10569-012-9459-2 ADSMathSciNetCrossRefGoogle Scholar
  11. Mihai, P., Vladimir, C.: The domain of initial conditions for the class of three-dimensional halo periodical orbits. Acta Astronaut. 36, 193–196 (1995).  https://doi.org/10.1016/0094-5765(95)00107-B CrossRefGoogle Scholar
  12. Ming, X., Shijie, X.: Trajectory and correction maneuver during the transfer from Earth to halo orbit. Chin. J. Aeronaut. 21(3), 200–206 (2008).  https://doi.org/10.1016/s1000-9361(08)60026-6 CrossRefGoogle Scholar
  13. Nath, P., Ramanan, R.V.: Precise halo orbit design and optimal transfer to halo orbits from Earth using differential evolution. Adv. Space Res. 57(1), 202–217 (2016).  https://doi.org/10.1016/j.asr.2015.10.033 ADSCrossRefGoogle Scholar
  14. Olds, A.D., Kluever, C.A., Cupples, M.L.: Interplanetary mission design using differential evolution. J. Spacecr. Rockets 44(5), 1060–1070 (2007).  https://doi.org/10.2514/1.27242 ADSCrossRefGoogle Scholar
  15. Pontani, M., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010).  https://doi.org/10.2514/1.48475 ADSCrossRefGoogle Scholar
  16. Qi, Y., Xu, S., Qi, R.: Transfer from Earth to libration point orbit using lunar gravity assist. Acta Astronaut. 133, 145–157 (2017).  https://doi.org/10.1016/j.actaastro.2017.01.020 ADSCrossRefGoogle Scholar
  17. Rauwolf, G.A., Coverstone-Carroll, V.L.: Near-optimal low-thrust orbit transfers generated by a genetic algorithm. J. Spacecr. Rockets 33(6), 859–862 (1996).  https://doi.org/10.2514/3.26850 ADSCrossRefGoogle Scholar
  18. Ren, Y., Shan, J.: A novel algorithm for generating libration point orbits about the collinear points. Celest. Mech. Dyn. Astron. 120(1), 57–75 (2014).  https://doi.org/10.1007/s10569-014-9560-9 ADSMathSciNetCrossRefGoogle Scholar
  19. Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. Dyn. Astron. 22(3), 241–253 (1980).  https://doi.org/10.1007/BF01229511 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Srivastava, V.K., Kumar, J., Kushvah, B.S.: Halo orbit transfer trajectory design using invariant manifold in the sun-earth system accounting radiation pressure and oblateness. Astrophys. Space Sci. 363(1), 17 (2018).  https://doi.org/10.1007/s10509-017-3235-4 ADSMathSciNetCrossRefGoogle Scholar
  21. Stalos, S., Folta, D., Short, B., et al.: Optimum transfer to a large-amplitude halo orbit for the Solar and Heliospheric Observatory (SOHO) spacecraft. Adv. Astronaut. Sci. 84, 639–650 (1993) Google Scholar
  22. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 342–359 (1997).  https://doi.org/10.1023/a:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Subbarao, K., Shippey, B.M.: Hybrid genetic algorithm collocation method for trajectory optimization. J. Guid. Control Dyn. 32(4), 1396–1403 (2009).  https://doi.org/10.2514/1.41449 ADSCrossRefGoogle Scholar
  24. Tao, X.F., Lian, Y.J.: A simple method for generating libration point orbits based on parameter optimization. Sci. Sin. Tech. 47, 89–102 (2017) (in Chinese) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Beihang UniversityBeijingChina
  2. 2.Beijing University of Civil Engineering and ArchitectureBeijingChina
  3. 3.DFH Satellite Co., Ltd.BeijingChina

Personalised recommendations