Astrophysics and Space Science

, 363:254 | Cite as

A comparison of two theories to explain the rotation curves in galaxies without dark matter particles

  • Barrie W. JervisEmail author
Original Article


The aim was to demonstrate the possible compatibility between the gravitational theory of Hajdukovic, which depends upon the existence of virtual particle pairs in vacuo, and that of emergent gravity according to Verlinde, and to derive new physical relationships. These theories, which avoid the necessity for postulating dark matter, and necessary, associated concepts are described. Then, assuming the validity of these theories, the following new results are obtained. Assuming a spherical galaxy model, the theories predict approximately the same radial distance from the galactic centre for the onset of enhanced gravitational fields. This agreement is used (1) to show that the virtual particle density of the vacuum at this distance depends only upon the Hubble scale and Planck’s constant, (2) to calculate its value, and (3) to show that the particles consist of closely packed pions.


Emergent gravity Gravitational dipoles Spherical galaxy Dark matter 



The author thanks Dr. A.J. Jervis for providing some references and comments on the manuscript, and John Edwards and David Barber for feedback.


  1. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973). ADSMathSciNetCrossRefGoogle Scholar
  2. Bekenstein, J., Milgrom, M.: Astrophys. J. 286, 7 (1984). ADSCrossRefGoogle Scholar
  3. Bidin, C.M., Carraro, G., Méndez, R.A., van Altena, W.F.: Astrophys. J. Lett. 724, 122 (2010). ADSCrossRefGoogle Scholar
  4. Blanchet, L.: Class. Quantum Gravity 24, 3 (2007). CrossRefGoogle Scholar
  5. Blanchet, L., Tiec, A.: Phys. Rev. D 78, 024031 (2008). ADSCrossRefGoogle Scholar
  6. Blanchet, L., Tiec, A.: Phys. Rev. D 80, 023524 (2009). ADSCrossRefGoogle Scholar
  7. Böhmer, C.G., Harko, T.: Phys. Lett. B 630, 73 (2005). ADSCrossRefGoogle Scholar
  8. Brouwer, M.M., Visser, M.R., Dvornik, A., Hoekstra, H., Kuijken, K., Valentijn, E.A., Bilicki, M., Blake, C., Brough, S., Buddelmeijer, H., Erben, T., Heymans, C., Hildebrandt, H., Holwerda, B.W., Hopkins, A.M., Klaes, D., Liske, J., Loveday, J., McFarland, J., Nakajima, R., Sifón, C., Taylor, E.N.: Mon. Not. R. Astron. Soc. 466, 2547 (2017). ADSCrossRefGoogle Scholar
  9. Casimir, H.B.G.: Proc. K. Ned. Akad. Wet., Ser. B, Phys. Sci. 51, 793 (1948) Google Scholar
  10. Clowe, D., Bradač, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C., Zaritsky, D.: Astrophys. J. Lett. 648, 109 (2006). ADSCrossRefGoogle Scholar
  11. Donato, F., Gentile, G., Salucci, P., Martins, F., Wilkinson, M.I., Gilmore, G., Grebel, E.K., Koch, A., Wyse, R.: Mon. Not. R. Astron. Soc. 397, 1169 (2009). ADSCrossRefGoogle Scholar
  12. Einasto, J.: Balt. Astron. 20, 231 (2011). ADSCrossRefGoogle Scholar
  13. Hajdukovic, D.: arXiv:0810.3435v3 [physics.gen-ph] (2009)
  14. Hajdukovic, D.S.: Europhys. Lett. 89, 1 (2010). CrossRefGoogle Scholar
  15. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011). ADSCrossRefGoogle Scholar
  16. Lamb, W.E., Retherford, R.C.: Phys. Rev. 72, 241 (1947). ADSCrossRefGoogle Scholar
  17. Rubin, V., Ford, W.K.: Astrophys. J. 159, 379 (1970). ADSCrossRefGoogle Scholar
  18. Verlinde, E.: J. High Energy Phys. 2001, 29 (2011). arXiv:1001.0785 CrossRefGoogle Scholar
  19. Verlinde, E.P.: SciPost Phys. 2, 016 (2017). ADSCrossRefGoogle Scholar
  20. Villata, M.: Europhys. Lett. 94, 20001 (2001). ADSCrossRefGoogle Scholar
  21. Visser, M., Vonk, M.: At Quantum Universe website, 20/02/2017, 23 05 (2017) Google Scholar
  22. Walker, M., Peñarrubia, J.: Astrophys. J. 742, 1 (2011). CrossRefGoogle Scholar
  23. Zwicky, F.: Helv. Phys. Acta 6, 110 (1933). ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Sheffield Hallam UniversitySheffieldUK
  2. 2.SheffieldUK

Personalised recommendations