Advertisement

Astrophysics and Space Science

, 363:251 | Cite as

Isotropic compact stars model in Rastall theory admitting conformal motion

  • G. Abbas
  • M. R. Shahzad
Original Article
  • 55 Downloads

Abstract

We study a new solution for an isotropic compact star model admitting conformal motion in the background of Rastall theory. The conformal Killing vector (\(\mathit{CKV}\)) and the equation of state (EoS) \(p=\omega \rho \), where \(\omega \) satisfying \(0<\omega <1\) is the \(\mathit{EoS}\) parameter for normal matter distribution, are the main ingredients of our methodology. Several physical aspects of the model has been explored analytically to observe the behavior of compact stars such as \(\mathit{TOV}\) equation, energy conditions, Buchdahl condition, stability analysis, compactness and surface redshift. Graphical analysis of the physical parameters have also been presented to support our analytical investigation. We observed that all the physical requirements are fulfilled and the presented model is quite acceptable.

Keywords

Compact stars Conformal motion Rastall theory of gravity 

Notes

Acknowledgement

We both appreciate the financial support from HEC, Islamabad, Pakistan under NRPU project with grant number 20-4059/NRPU/R & D/HEC/14/1217.

Conflict of interest

There is no conflict of interest regarding the publication of this manuscript.

References

  1. Banerjee, A., Rahaman, F., Islam, S., Govender, M.: Eur. Phys. J. C 76, 34 (2016) ADSGoogle Scholar
  2. Bohmer, C.G., Harko, T.: Gen. Relativ. Gravit. 39, 757 (2007) ADSGoogle Scholar
  3. Bohmer, C.G., Mussa, A., Tamanini, N.: Class. Quantum Gravity 28, 245020 (2011) ADSGoogle Scholar
  4. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959) ADSMathSciNetGoogle Scholar
  5. Chandrasekhar, C.: Astrophys. J. 140, 417 (1964) ADSMathSciNetGoogle Scholar
  6. Corda, C.: Int. J. Mod. Phys. D 18, 2275 (2009) ADSGoogle Scholar
  7. Darabi, F., Moradpour, H., Licata, I., Heydarzade, Y., Corda, C.: Eur. Phys. J. C 78, 25 (2018) ADSGoogle Scholar
  8. Das, A., Rahaman, F., Guha, B.K., Ray, S.: Astrophys. Space Sci. 358, 36 (2015) ADSGoogle Scholar
  9. Das, A., Rahaman, F., Guha, B.K., Ray, S.: Eur. Phys. J. C 76, 654 (2016) ADSGoogle Scholar
  10. Fabris, J.C., Piattella, O.F., Rodrigues, D.C., Batista, C.E.M., Daouda, M.H.: Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012) Google Scholar
  11. Hansraj, S., Banerjee, A., Channuie, P.:. arXiv:1805.00003v1 [gr-qc] (2018)
  12. Herrera, L.: Phys. Lett. A 165, 206 (1992) ADSGoogle Scholar
  13. Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 778 (1985a) ADSMathSciNetGoogle Scholar
  14. Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 2018 (1985b) ADSMathSciNetGoogle Scholar
  15. Herrera, L.: Ponce de Leon, J.: J. Math. Phys. 26, 2302 (1985c) ADSMathSciNetGoogle Scholar
  16. Herrera, L., Jimenez, J., Leal, L., Ponce de Leon, J.: J. Math. Phys. 25, 3274 (1984) ADSMathSciNetGoogle Scholar
  17. Heydarzade, Y., Darabi, F.: Phys. Lett. B 771, 365–373 (2017) ADSGoogle Scholar
  18. Heydarzade, Y., Moradpour, H., Darabi, F.: Can. J. Phys. 95, 1253 (2017) ADSGoogle Scholar
  19. Kileba Matondo, D., Maharaj, S.D., Ray, S.: Eur. Phys. J. C 78, 437 (2018a) ADSGoogle Scholar
  20. Kileba Matondo, D., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 363, 187 (2018b) ADSGoogle Scholar
  21. Kumar, R., Ghosh, S.G.: arXiv:1711.08256 (2017)
  22. Lobo, I.P., Moradpour, H., Morais Graca, J.P., Salako, I.G.: Int. J. Mod. Phys. D 27, 1850069 (2018) ADSGoogle Scholar
  23. Ma, M.S., Zhao, R.: Eur. Phys. J. C 77, 629 (2017) ADSGoogle Scholar
  24. Maartens, R., Maharaj, M.S.: J. Math. Phys. 31, 151 (1990) ADSMathSciNetGoogle Scholar
  25. Maartens, R., Maharaj, S.D., Tupper, B.O.J.: Class. Quantum Gravity 12, 2577 (1995) ADSGoogle Scholar
  26. Maartens, R., Maharaj, S.D., Tupper, B.O.J.: Class. Quantum Gravity 13, 317 (1996) ADSGoogle Scholar
  27. Mafa Takisa, P., Maharaj, S.D., Manjonjo, A.M., Moopanar, S.: Eur. Phys. J. Plus 77, 713 (2017) ADSGoogle Scholar
  28. Mak, M.K., Harko, T.: Proc. R. Soc. A 459, 393 (2003) ADSGoogle Scholar
  29. Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Eur. Phys. J. Plus 132, 62 (2017) Google Scholar
  30. Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Class. Quantum Gravity 35, 045015 (2018) ADSGoogle Scholar
  31. Moopanar, S., Maharaj, S.D.: Int. J. Theor. Phys. 49, 1878 (2010) Google Scholar
  32. Moopanar, S., Maharaj, S.D.: J. Eng. Math. 82, 125 (2013) Google Scholar
  33. Moradpour, H., Salako, I.G.: Adv. High Energy Phys. 2016, 3492796 (2016) Google Scholar
  34. Moradpour, H., Sadeghnezhad, N., Hendi, S.H.: Can. J. Phys. 95, 1257 (2017) ADSGoogle Scholar
  35. Rahaman, F., Jamil, M., Kalam, M., Chakraborty, K., Ghosh, A.: Astrophys. Space Sci. 325, 137 (2010a) ADSGoogle Scholar
  36. Rahaman, F., Jamil, M., Sharma, R., Chakraborty, K.: Astrophys. Space Sci. 330, 249 (2010b) ADSGoogle Scholar
  37. Rahaman, F., Pradhan, A., Ahmed, N., Ray, S., Saha, B., Rahaman, M.: Int. J. Mod. Phys. D 24, 1550049 (2015a) ADSGoogle Scholar
  38. Rahaman, F., Ray, S., Khadekar, G.S., Kuhfittig, P.K.F., Karar, I.: Int. J. Theor. Phys. 54, 699 (2015b) Google Scholar
  39. Rastall, P.: Phys. Rev. D 6, 3357 (1972) ADSMathSciNetGoogle Scholar
  40. Rastall, P.: Can. J. Phys. 54, 66 (1976) ADSGoogle Scholar
  41. Straumann, N.: General Relativity and Relativistic Astrophysics. Springer, Berlin (1984) Google Scholar
  42. Tolman, R.C.: Phys. Rev. 55, 364–373 (1939) ADSGoogle Scholar
  43. Tupper, B.O.J., Keane, A.J., Carot, J.: Class. Quantum Gravity 29, 145016 (2012) ADSGoogle Scholar
  44. Wagoner, R.V.: Phys. Rev. D 1, 3209 (1970) ADSGoogle Scholar
  45. Zubair, M., Sardar, I.H., Rahman, F., Abbas, G.: Astrophys. Space Sci. 238, 361 (2016) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Islamia University of BahawalpurBahawalpurPakistan

Personalised recommendations