Astrophysics and Space Science

, 363:250 | Cite as

Quasi-periodicities in cosmic rays and time lag with the solar activity at a middle latitude neutron monitor: 1982–2017

  • Partha Chowdhury
  • Karel KudelaEmail author
Original Article


Galactic cosmic rays (GCRs) after entering the heliosphere are continuously modulated by the change in solar wind and the associated heliosphericmagnetic field. GCRs also follow about 11 year sunspot cycle in an inverse way with some time lag of few months to years, which usually varies from cycle to cycle Badruddin et al. 2007; Kane 2014; Aslam and Badruddin 2015 (e.g. Badruddin et al. in Astron. Astrophys. 466(2):697–704, 2007; Kane in Sol. Phys. 289:2669–2675, 2014; Aslam and Badruddin in Sol. Phys. 290:2333, 2015). In this work, we have investigated solar modulation of GCRs measured at three mid cut-off rigidity neutron monitor stations for the period of 1982 to 2017, covering two complete solar cycles and a major part of the recent cycle 24. We study the time lag between GCRs intensity and various solar, geomagnetic and interplanetary parameters separately during the solar cycles under investigation. Further, we have investigated the presence and temporal evolution of mid term quasi-periodicities of GCRs time series during the above mentioned phases utilizing both Morlet wavelet transform and Scargle periodogram technique. Power spectral analysis indicates the presence of several mid term quasi-periodicities including Rieger type and Quasi-biennial oscillations. We discuss the findings and compare them with results of other authors.


Galactic cosmic rays Cosmic ray modulation Periodicity Wavelet analysis Solar cycles 



PIs of NMs whose data are used in the study (Hermanus and Rome) are acknowledged. KK wishes to acknowledge supported by the project CRREAT (reg. CZ.02.1.01/0.0/0.0/15003/0000481) call number 0215003 of the Operational Programme Research, Development and Education. Ronald Langer is acknowledged for taking care about LS NM measurements. Support by VEGA project 2/0155/18 is acknowledged.


  1. Adriani, O., et al.: Unexpected cyclic behavior in cosmic-ray protons observed by PAMELA at 1 AU. Astrophys. J. Lett. 852, L28 (2018) ADSCrossRefGoogle Scholar
  2. Ahluwalia, H.S.: A correlation between IMF and the limiting primary rigidity for the cosmic ray diurnal anisotropy. Geophys. Res. Lett. 19, 633–636 (1992). ADSCrossRefGoogle Scholar
  3. Aslam, O.P.M., Badruddin: Study of cosmic-ray modulation during the recent unusual minimum and mini-maximum of solar cycle 24. Sol. Phys. 290, 2333 (2015). ADSCrossRefGoogle Scholar
  4. Badruddin, Singh, M., Singh, Y.P.: Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet. Astron. Astrophys. 466(2), 697–704 (2007) ADSCrossRefGoogle Scholar
  5. Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y., Nakariakov, V.M.: A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. (2014). CrossRefGoogle Scholar
  6. Bazilevskaya, et al.: Correlation of the quasi-biennial oscillations in galactic cosmic rays and in the solar activity indices. Inst. Phys. Conf. Ser. 632, 012050 (2015) CrossRefGoogle Scholar
  7. Burlaga, L.F., McDonald, F.B., Ness, N.F.: Cosmic ray modulation and the distant heliospheric magnetic field—Voyager 1 and 2 observations from 1986 to 1989. J. Geophys. Res. Space Phys. 98(A1), 1–11 (1993) (ISSN 0148-0227) ADSCrossRefGoogle Scholar
  8. Chowdhury, P., Kudela, K., Dwivedi, B.N.: Heliospheric modulation of galactic cosmic rays during solar cycle 23. Sol. Phys. 286, 577–591 (2013) ADSCrossRefGoogle Scholar
  9. Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophys. Space Sci. 356(1), 7–18 (2015) ADSCrossRefGoogle Scholar
  10. Chowdhury, P., Kudela, K., Moon, Y.-J.: A study of heliospheric modulation and periodicities of galactic cosmic rays during cycle. Sol. Phys. 291, 581–602 (2016a). ADSCrossRefGoogle Scholar
  11. Chowdhury, P., Gokhale, M.H., Singh, J., Moon, Y.-J.: Mid-term quasi-periodicities in the CaII-K plage index of the Sun and their implications. Astrophys. Space Sci. 361, 54 (2016b) ADSCrossRefGoogle Scholar
  12. Dorman, L.I.: Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23. Adv. Space Res. 27(3), 601–606 (2001) ADSCrossRefGoogle Scholar
  13. Dorman, L.I., Iucci, N., Villoresi, G.: Time lag between cosmic rays and solar activity: solar minimum of 1994–1996 and residual modulation. Adv. Space Res. 27(3), 595–600 (2001) ADSCrossRefGoogle Scholar
  14. El-Borie, M.A.: Correlation studies of the inclinations of the heliospheric current sheet with: I. Cosmic ray intensity of different rigidities. Astropart. Phys. 16, 169–180 (2001) ADSCrossRefGoogle Scholar
  15. El-Borie, M.A., Naglaa, A., Aly, A., El-Taher, A.: Mid-term periodicities of cosmic ray intensities. J. Advert. Res. 2(2), 137–147 (2011) CrossRefGoogle Scholar
  16. Gil, A., Mursula, K.: Hale cycle and long-term trend in variation of galactic cosmic rays related to solar rotation. Astron. Astrophys. 599, A112 (2017). ADSCrossRefGoogle Scholar
  17. Guedes, M.R.G., Pereira, E.S., Cecatto, J.R.: Wavelet analysis of CME, X-ray flare, and sunspot series. Astron. Astrophys. 573, A64 (2015) ADSCrossRefGoogle Scholar
  18. Hathaway, D.H.: The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015) ADSCrossRefGoogle Scholar
  19. Horn, J.H., Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757–763 (1986) ADSCrossRefGoogle Scholar
  20. Kane, R.P.: Hysteresis of cosmic rays with respect to sunspot numbers during the recent sunspot minimum. Sol. Phys. 269, 451–454 (2011) ADSCrossRefGoogle Scholar
  21. Kane, R.P.: Evolution of cosmic-ray intensities while the Earth was engulfed by the interplanetary storm (Blob) of 1–3 October 2013. Sol. Phys. 289, 2669–2675 (2014) ADSCrossRefGoogle Scholar
  22. Katsavrias, Ch., Preka-Papadema, P., Moussas, X.: Wavelet analysis on solar wind parameters and geomagnetic indices. Sol. Phys. (2012). CrossRefGoogle Scholar
  23. Kilcik, A., Yurchyshyn, V., Donmez, B., Obridko, V.N., Ozguc, A., Rozelot, J.P.: Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Sol. Phys. 293(4), 63 (2018) ADSCrossRefGoogle Scholar
  24. Kolotkov, D.Y., Broomhall, A.-M., Nakariakov, V.M.: Hilbert–Huang transform analysis of periodicities in the last two solar activity cycle. Mon. Not. R. Astron. Soc. 451, 4360–4367 (2015) ADSCrossRefGoogle Scholar
  25. Kudela, K., Langer, R.: Cosmic ray measurements in High Tatra mountains: 1957–2007. Adv. Space Res. 44(10), 1166–1172 (2009) ADSCrossRefGoogle Scholar
  26. Kudela, K., Sabbah, I.: Quasi-periodic variations of low energy cosmic rays. Sci. China, Technol. Sci. 59(1), 1–11 (2016). CrossRefGoogle Scholar
  27. Mavromichalaki, H., Belehaki, A., Rafios, X.: Simulated effects at neutron monitor energies: evidence for a 22-year cosmic-ray variation. Astron. Astrophys. 330, 764–772 (1998) ADSGoogle Scholar
  28. Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J.: Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953–1996. Ann. Geophys. 21, 1681–1689 (2003) ADSCrossRefGoogle Scholar
  29. Mavromichalaki, H., Paouris, E., Karalidi, T.: Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters. Sol. Phys. 245, 369–390 (2007) ADSCrossRefGoogle Scholar
  30. Mishra, V.K., Gupta, M., Mishra, B.N., Nigam, S.K., Mishra, A.P.: Multiparametric effect of solar activity on cosmic rays. J. Astrophys. Astron. 29, 257–262 (2008) ADSCrossRefGoogle Scholar
  31. Modzelewska, R., Alania, M.V.: Quasi-periodic changes in the 3D solar anisotropy of Galactic cosmic rays for 1965–2014. Astron. Astrophys. 609, A32 (2018) ADSCrossRefGoogle Scholar
  32. Moraal, H.: Observations of the eleven-year cosmic-ray modulation cycle. Space Sci. Rev. 19, 845–920 (1976) ADSCrossRefGoogle Scholar
  33. Ou, J., Du, A., Finlay, C.C.: Quasi-biennial oscillations in the geomagnetic field: their global characteristics and origin. J. Geophys. Res. Space Phys. 122, 5043–5058 (2017). ADSCrossRefGoogle Scholar
  34. Poblet, F.C., Azpiliculeta, F.: 27-day variation in solar-terrestrial parameters: global characteristics and an origin based approach of the signals. Adv. Space Res. 61, 2275–2289 (2018) ADSCrossRefGoogle Scholar
  35. Scargle, J.F.: Studies in astronomical time series II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982) ADSCrossRefGoogle Scholar
  36. Singh, Y.P., Badruddin: Short- and mid-term oscillations of solar, geomagnetic activity and cosmic ray intensity during the last two solar magnetic cycles. Planet. Space Sci. 138, 1–6 (2017) ADSCrossRefGoogle Scholar
  37. Singh, M., Singh, Y.P., Badruddin: Solar modulation of galactic cosmic rays during the last five solar cycles. J. Atmos. Sol.-Terr. Phys. 70, 169–183 (2008) ADSCrossRefGoogle Scholar
  38. Storini, M., Signoretti, F., Re, F., Diego, P., Marcucci, M.F., Laurenza, M., Massetti, S., Parisi, M.: Cosmic ray intensity for about five solar cycles. J. Phys. Conf. Ser. 632, 012065 (2005) CrossRefGoogle Scholar
  39. Tomassetti, N., Orcinha, M., Barão, F., Bertucci, B.: Evidence for a time lag in solar modulation of galactic cosmic rays. Astrophys. J. Lett. 849, L32 (2017) ADSCrossRefGoogle Scholar
  40. Torrence, C., Compo, G.P.: A Practical Guide to Wavelet Analysis (1998).<0061:APGTWA>2.0.CO;2 CrossRefGoogle Scholar
  41. Usoskin, I.G., Kananen, H., Mursula, K., Tanskanen, P., Kovaltsov, G.A.: Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103(A5), 9567–9754 (1998) ADSCrossRefGoogle Scholar
  42. Usoskin, I.G., Mursula, K., Kananen, H., Kovaltsov, G.A.: Dependence of cosmic rays on solar activity for odd and even solar cycle. Adv. Space Res. 27(3), 571–576 (2001) ADSCrossRefGoogle Scholar
  43. Vipindas, V., Gopinath, S., Girish, T.E.: Periodicity analysis of galactic cosmic rays using Fourier, Hilbert, and higher-order spectral methods. Astrophys. Space Sci. 361, 4 (2016) CrossRefGoogle Scholar
  44. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70 (1967). CrossRefGoogle Scholar
  45. Xanthakis, J., Mavromichalaki, H., Petropoulos, B.: Time-evolution of cosmic-ray intensity modulation. Sol. Phys. 122, 345–363 (1989) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Engineering Science DepartmentUniversity of CalcuttaKolkataIndia
  2. 2.Institute of Nuclear PhysicsCzech Academy of SciencesŘežCzech Republic
  3. 3.Institute of Experimental PhysicsSASKošiceSlovakia

Personalised recommendations