Advertisement

Astrophysics and Space Science

, 363:182 | Cite as

Modeling of local ionospheric time varying characteristics based on singular value decomposition over low-latitude GPS stations

  • Raghavendra Neeli
  • J R K Kumar Dabbakuti
  • V. Rajesh Chowdhary
  • Nitin K. Tripathi
  • Venkata Ratnam Devanaboyina
Original Article
  • 163 Downloads

Abstract

Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44 N, 80.62 E), and IISC, Bangalore (12.97 N, 77.59 E), LCK2, Lucknow (26.76 N, 80.88 E), one station from Thailand namely AITB, Bangkok (14.07 N, 100.61 E), and one station from South Andaman Island namely PBR, Port Blair (11.43 N, 92.43 E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).

Keywords

Ionosphere GPS SVD FSA TEC IRI SPIM 

Notes

Acknowledgements

The present work has been carried out under the project titled ‘Development of Single Frequency Ionospheric correction & plasma bubble detection algorithms using GPS Aided GEO Augmented Navigation (GAGAN) & Navigation Indian Constellation (NavIC) TEC observations’ sponsored by NavIC–GAGAN Utilization Programme at Space Applications Centre, Ahmedabad, India, Project ID: NGP-10. The contribution is also supported by Department of Science and Technology (DST), New Delhi, India, SR/FST/ESI-130/2013(C) under DST–FIST Program. The authors thank the reviewers for their helpful comments.

References

  1. A, E., Zhang, D.H., Xiao, Z., Hao, Y.Q., Ridley, A.J., Moldwin, M.: Modeling ionospheric for F2 by using empirical orthogonal function analysis. Ann. Geophys. 29(8), 1501–1515 (2011) ADSCrossRefGoogle Scholar
  2. A, E., Zhang, D., Ridley, A.J., Xiao, Z., Hao, Y.: A global model: empirical orthogonal function analysis of total electron content 1999–2009 data. J. Geophys. Res. Space Phys. 117, A03328 (2012) ADSGoogle Scholar
  3. Abdu, M.: Equatorial ionosphere–thermosphere system: electrodynamics and irregularities. Adv. Space Res. 35(5), 771–787 (2005) ADSCrossRefGoogle Scholar
  4. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenneyDS, A.: LAPACK Users Guide, vol.3. Society for Industrial and Applied Mathematics, Philadelphia (1999) CrossRefzbMATHGoogle Scholar
  5. Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362(9), 178 (2017) ADSCrossRefGoogle Scholar
  6. Ansari, K., Panda, S.K., &Corumluoglu, O.: Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models. Astrophys. Space Sci. 363(3), 42 (2018) ADSCrossRefGoogle Scholar
  7. Appleton, E.V.: Two anomalies in the ionosphere. Nature 157(3995), 691 (1946) ADSCrossRefGoogle Scholar
  8. Arunpold, S., Tripathi, N.K., Chowdhary, V.R., Raju, D.K.: Comparison of GPS–TEC measurements with IRI-2007 and IRI-2012 modeled TEC at an equatorial latitude station, Bangkok, Thailand. J. Atmos. Sol.-Terr. Phys. 117, 88–94 (2014) ADSCrossRefGoogle Scholar
  9. Bagiya, M.S., Joshi, H., Iyer, K., Aggarwal, M., Ravindran, S., Pathan, B.: TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann. Geophys. 27(3), 1047–1057 (2009) ADSCrossRefGoogle Scholar
  10. Bilitza, D., Reinisch, B., Lastovicka, J.: Progress in observation-based ionospheric modeling. Space Weather 6, S02002 (2008) ADSGoogle Scholar
  11. Bouya, Z., Terkildsen, M., Neudegg, D.: Regional GPS-based ionospheric TEC model over Australia using spherical cap harmonic analysis. In: Proceedings of 38th COSPAR Scientific Assembly, Bremen, Germany, vol. 38, p. 4 (2010) Google Scholar
  12. Chen, Z., Zhang, S.R., Coster, A.J., Fang, G.: EOF analysis and modeling of GPS TEC climatology over North America. J. Geophys. Res. Space Phys. 120(4), 3118–3129 (2015) ADSCrossRefGoogle Scholar
  13. Chowdhary, V.R., Tripathi, N.K., Arunpold, S., Raju, D.K.: Characterization of GPS–TEC in a low-latitude region over Thailand during 2010–2012. Ann. Geophys. 58(5), 0553 (2015) Google Scholar
  14. Dabas, R.S.: Ionosphere and its influence on radio communications. Resonance 5(7), 28–43 (2000) CrossRefGoogle Scholar
  15. Dashora, N., Suresh, S.: Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J. Geophys. Res. Space Phys. 120(6), 5176–5193 (2015) ADSCrossRefGoogle Scholar
  16. Fejer, B.G.: Low latitude ionospheric electrodynamics. Space Sci. Rev. 158(1), 145–166 (2011) ADSCrossRefGoogle Scholar
  17. Habarulema, J.B., McKinnell, L.A., Opperman, B.D.: Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks. J. Geophys. Res., Space Phys. 116(A4) (2011) Google Scholar
  18. Jakobsen, J., Knudsen, P., Jensen, A.B.: Analysis of local ionospheric time varying characteristics with singular value decomposition. J. Geod. 84(7), 449–456 (2010) ADSGoogle Scholar
  19. Jakowski, N., Wehrenpfennig, A., Heise, S., Schlueter, S., Noack, T.: Space weather effects in the ionosphere and their impact on positioning. In: ESA Workshop Paper, December (2001) Google Scholar
  20. Jamjareegulgarn, P., Supnithi, P., Hozumi, K., Tsugawa, T.: Study of ionospheric topside variations based on NeQuick topside formulation and comparisons with the IRI-2012 model at equatorial latitude station, Chumphon, Thailand. Adv. Space Res. 60(2), 206–221 (2017) ADSCrossRefGoogle Scholar
  21. Kaplan, E., Hegarty, C.: Understanding GPS, Principles and Applications. 2. Artech House, INC, Norwood (2006) Google Scholar
  22. Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., Maruyama, T.: Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand. Earth Planets Space 63(4), 365–370 (2011) ADSCrossRefGoogle Scholar
  23. Kumar, S., Priyadarshi, S., Krishna, S.G., Singh, A.: GPS–TEC variations during low solar activity period (2007–2009) at Indian low latitude stations. Astrophys. Space Sci. 339(1), 165–178 (2012) ADSCrossRefGoogle Scholar
  24. Kumar, S., Tan, E.L., Murti, D.S.: Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes. Earth Planets Space 67(1), 42–58 (2015) ADSCrossRefGoogle Scholar
  25. Mao, T., Wan, W., Yue, X., Sun, L., Zhao, B., Guo, J.: An empirical orthogonal function model of total electron content over China. Radio Sci. 43(2) (2008) Google Scholar
  26. Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic, San Diego (1984) zbMATHGoogle Scholar
  27. Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region. Adv. Space Res. 55(8), 1948–1964 (2015) ADSCrossRefGoogle Scholar
  28. Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (2004) zbMATHGoogle Scholar
  29. Preisendorfer, R., Mobley, C.D.: Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam (1988) Google Scholar
  30. Seemala, G.K., Valladares, C.E.: Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46, 1–14 (2011) CrossRefGoogle Scholar
  31. Sivavaraprasad, G., Ratnam, D.V.: Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station. Adv. Space Res. 60(2), 475–490 (2017) ADSCrossRefGoogle Scholar
  32. Skone, S.: Wide area ionosphere grid modelling in the auroral region. UCGE Reports, Number 20123, Department of Geomatics Engineering, The University of Calgary (1998) Google Scholar
  33. Yu, Y., Wan, W., Xiong, B., Ren, Z., Zhao, B., Zhang, Y., Ning, B., Liu, L.: Modeling Chinese ionospheric layer parameters based on EOF analysis. Space Weather 13(5), 339–355 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Engineering and Technology, RS&GIS Field of StudyAsian Institute of TechnologyKlong LaungThailand
  2. 2.Department of ECM, KLEFK L UniversityVaddeswaram, Guntur DtIndia
  3. 3.Department of ECE, KLEFK L UniversityVaddeswaram, Guntur DtIndia
  4. 4.Department of Atmospheric Science, KLEFK L UniversityVaddeswaram, Guntur DtIndia

Personalised recommendations