Advertisement

EMEC instability based on kappa-Maxwellian distributed trapped electrons in auroral plasma

  • M. Nazeer
  • M. N. S. Qureshi
  • C. Shen
Original Article
  • 48 Downloads

Abstract

In space plasmas, particle distributions are often observed having high energy tails and are well fitted by kappa distribution function. However, in auroral region electrons are expected to be accelerated mainly along the magnetic field lines and one may expect Maxwellian behaviour in perpendicular direction. Therefore, in the present study propagation characteristics of electromagnetic electron cyclotron (EMEC) waves is studied by employing kappa-Maxwellian distribution function for energetic trapped electrons in auroral region. Real frequency and the growth rate expressions have been solved numerically for kappa-Maxwellian plasma and then analyzed by considering the effect of different plasma parameters for wide range of auroral altitudes. The numerical results obtained show that growth rate increases with the increase in ratio \({\omega_{pe}} / {\varOmega_{e}}\), plasma beta, temperature anisotropy \({T_{\bot}} / {T_{\parallel}}\) and trapped electron drift speed but decreases when superthermal electron population increases.

Keywords

Kappa-Maxwellian distribution Kappa distribution Trapped electrons EMEC waves 

References

  1. Alinejad, H.: Astrophys. Space Sci. 325, 209 (2010) ADSCrossRefGoogle Scholar
  2. Alinejad, H.: Astrophys. Space Sci. 334, 325 (2011) ADSCrossRefGoogle Scholar
  3. Alinejad, H.: Astrophys. Space Sci. 337, 637 (2012) ADSCrossRefGoogle Scholar
  4. Aziz, T., Masood, W., Qureshi, M.N.S., Shah, H.A., Yoon, P.H.: Phys. Plasmas 23, 062307 (2016) ADSCrossRefGoogle Scholar
  5. Baumjohann, W., Treumann, R.A.: Basic Plasma Space Physics. Imperial College Press, London (1996) CrossRefMATHGoogle Scholar
  6. Cattaert, T., Hellberg, M.A., Mace, R.L.: Phys. Plasmas 14, 082111 (2007) ADSCrossRefGoogle Scholar
  7. Chiu, T.Y., Schuiz, M.: J. Geophys. Res. 83, 629 (1978) ADSCrossRefGoogle Scholar
  8. Christon, S.P., Williams, D.J., Mitchell, D.G., Huang, C.Y., Frank, L.A.: J. Geophys. Res. 96, 1 (1991) ADSCrossRefGoogle Scholar
  9. Collier, M.R.: J. Geophys. Res. 20, 1531 (1993) Google Scholar
  10. Fennell, J.F., Gomey, D.J., Mizera, P.F.: In: Akasofu, S.I., Kan, J.R. (eds.) Physics of Auroral Arc Formation. AGU, Washington D.C. (1981) Google Scholar
  11. Fried, B.D., Conte, S.D.: The Plasma Dispersion Function. Academic, New York (1961) Google Scholar
  12. Hellberg, M.A., Mace, R.L.: Phys. Plasmas 9, 1495 (2002) ADSCrossRefGoogle Scholar
  13. Kan, J.R., Lee, L.C., Akasofu, S.I.: J. Geophys. Res. 84, 4305 (1979) ADSCrossRefGoogle Scholar
  14. Kourakis, I., Shukla, P.K.: Phys. Plasmas 12, 082303 (2005) ADSCrossRefGoogle Scholar
  15. Lazar, M., Poedts, S., Michno, M.J.: Astron. Astrophys. 554, A64 (2013) ADSCrossRefGoogle Scholar
  16. Lazar, M., Poedts, S., Schlickeiser, R.: J. Geophys. Res. 119, 9395 (2014) CrossRefGoogle Scholar
  17. Lazar, M., Pierrard, V., Shaaban, S.M., Fichtner, H., Poedts, S.: Astron. Astrophys. 602, A44 (2017) ADSCrossRefGoogle Scholar
  18. Lazar, M., Shaaban, S.M., Fichtner, H., Poedts, S.: Phys. Plasmas 25, 022902 (2018) ADSCrossRefGoogle Scholar
  19. Leubner, M.P.: J. Geophys. Res. 87, 6335 (1982) ADSCrossRefGoogle Scholar
  20. Mace, R.L.: J. Geophys. Res. 103, 14643 (1998) ADSCrossRefGoogle Scholar
  21. Mace, R.L., Hellberg, M.A.: Phys. Plasmas 2, 2098 (1995) ADSCrossRefGoogle Scholar
  22. Mace, R.L., Hellberg, M.A.: Phys. Plasmas 16, 072113 (2009) ADSCrossRefGoogle Scholar
  23. Mace, R.L., Sydora, R.D.: J. Geophys. Res. 115, A07206 (2010) ADSCrossRefGoogle Scholar
  24. Masood, W., Muzzamal, I.S., Mirza, A.M.: Astrophys. Space Sci. 352, 621 (2014) ADSCrossRefGoogle Scholar
  25. Parks, G.K., Lee, E., Teste, A., Wilber, M., Lin, N., Canu, P., Dandouras, I., Reme, H., Fu, S.Y., Goldstein, M.L.: Phys. Plasmas 15, 080702 (2007) CrossRefGoogle Scholar
  26. Qureshi, M.N.S., Shah, H.A., Murtaza, G., Schwartz, S.J., Mahmood, F.: Phys. Plasmas 11, 3819 (2004) ADSCrossRefGoogle Scholar
  27. Qureshi, M.N.S., Nasir, W., Masood, W., Yoon, P.H., Shah, H.A., Schwartz, S.J.: J. Geophys. Res. 119, 10059 (2014) CrossRefGoogle Scholar
  28. Shah, H.A., Masood, W., Asim, M.T., Qureshi, M.N.S.: Astrophys. Space Sci. 350, 615 (2014) ADSCrossRefGoogle Scholar
  29. Shukla, P.K., Yu, M.Y., Spatscheck, K.H.: Phys. Fluids 18, 265 (1975) ADSCrossRefGoogle Scholar
  30. Stenzel, R.L.: J. Geophys. Res. 104, 14379 (1999) ADSCrossRefGoogle Scholar
  31. Sugiyama, H., Singh, S., Omura, Y., Shoji, M., Nunn, D., Summers, D.: J. Geophys. Res. 120, 8426 (2015) CrossRefGoogle Scholar
  32. Summers, D., Thorne, R.M.: Phys. Fluids B 3, 1835 (1991) ADSCrossRefGoogle Scholar
  33. Vasyliunas, V.M.: J. Geophys. Res. 73, 7519 (1968) ADSCrossRefGoogle Scholar
  34. Wu, C.S., Lee, L.C.: Astrophys. J. 230, 621 (1979) ADSCrossRefGoogle Scholar
  35. Wu, C.S., Yoon, P.H., Freund, H.P.: Geophys. Res. Lett. 16, 1461 (1989) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsGC UniversityLahorePakistan
  2. 2.Shenzhen Graduate School, HIT CampusUniversity Town of ShenzhenShenzhenP.R. China

Personalised recommendations