Design and analysis of Weak Stability Boundary trajectories to Moon

  • Pooja DuttEmail author
  • A. K. Anilkumar
  • R. K. George
Original Article


An algorithm is developed to find Weak Stability Boundary transfer trajectories to Moon in high fidelity force model using forward propagation. The trajectory starts from an Earth Parking Orbit (circular or elliptical). The algorithm varies the control parameters at Earth Parking Orbit and on the way to Moon to arrive at a ballistic capture trajectory at Moon. Forward propagation helps to satisfy launch vehicle’s maximum payload constraints. Using this algorithm, a number of test cases are evaluated and detailed analysis of capture orbits is presented.


Weak Stability Boundary Ballistic capture Forward propagation Genetic algorithm 



The first author acknowledges the support provided by Vikram Sarabhai Space Centre (VSSC) and Indian Institute of Space Science and Technology (IIST) in carrying out this research work. The authors thank the editor and reviewer for their constructive comments.


  1. Anderson, R.L., Lo, M.W.: The role of invariant manifolds in low thrust trajectory design (part II). AIAA Paper 2004-5305 (2004) Google Scholar
  2. Assadian, N., Pourtakdoust, S.H.: Multiobjective genetic optimization of Earth-Moon trajectories in the restricted four-body problem. Adv. Space Res. 45, 398–409 (2010) ADSCrossRefGoogle Scholar
  3. Belbruno, E.A.: Lunar capture orbits, a method of constructing Earth-Moon trajectories and the Lunar GAS mission proceedings of AIAA/DGLR/JSASS. Inter. Propl. Conf., AIAA Paper No. 87-1054 (1987) Google Scholar
  4. Belbruno, E.: Examples of nonlinear dynamics of ballistic capture and escape in the Earth-Moon system. AIAA Paper No. 90-2896, Proc. Annual Astrodynamics Conference (1990) Google Scholar
  5. Belbruno, E.A.: Capture Dynamics and Chaotic Dynamics in Celestial Mechanics. Princeton University Press, Princeton (2004) zbMATHGoogle Scholar
  6. Belbruno, E.A., Carrico, J.P.: Calculation of weak stability boundary ballistic lunar transfer trajectories. AIAA/AAS Astrodynamics Specialist Conference, AIAA 2000-4142 (2000) Google Scholar
  7. Belbruno, E.A., Miller, J.K.: Sun perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16(4), 770–775 (1993) ADSCrossRefGoogle Scholar
  8. Belbruno, E.A., Humble, R., Coil, J.: Ballistic capture lunar transfer determination for the U.S. Air Force Academy Blue Moon mission. AAS 97-171 (1997) Google Scholar
  9. Biesbroek, R., Ockels, W., Janin, G.: Optimization of weak stability boundary orbits from GTO to the Moon using genetic algorithms. AF-99-A.6.10, Amsterdam (1999) Google Scholar
  10. Capuzzo-Dolcetta, R., Giancotti, M.: A study of low-energy transfer orbits to the Moon: towards an operational optimization technique. Celest. Mech. Dyn. Astron. 115(3), 215–232 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Chung, M.J., Hatch, S.J., Kangas, J.A., Long, S.M., Roncoli, R.B., Sweetser, T.H.: Trans-lunar cruise trajectory design of GRAIL (Gravity Recovery and Interior Laboratory) mission, AIAA 2010-8384. In: AIAA Guidance, Navigation and Control Conference, Toronto, Ontario, Canada, 2–5, Aug. 2010 (2010) Google Scholar
  12. Circi, C., Teofilatto, P.: On the dynamics of WSB lunar transfer. Celest. Mech. 79, 41–72 (2001) ADSCrossRefzbMATHGoogle Scholar
  13. Dutt, P., Anilkumar, A.K., George, R.K.: Dynamics of weak stability boundary transfer trajectories to Moon. Astrophys. Space Sci. 361(11), 361–368 (2016) ADSMathSciNetCrossRefGoogle Scholar
  14. Fantino, E., Gómez, G., Masdemont, J.J., Ren, Y.: A note on libration point orbits, temporary capture and low-energy transfers. Acta Astronaut. 67, 1038–1052 (2010) ADSCrossRefGoogle Scholar
  15. García, F., Gómez, G.: A note on weak stability boundaries. Celest. Mech. Dyn. Astron. 97, 87–100 (2007) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Mora, M.B., Hechler, M.: A strategy to find weak stability boundary lunar transfers. IAF Paper 00-A.6.03 (2000) Google Scholar
  18. Hatch, S.J., Roncoli, R.B., Sweetser, T.H.: GRAIL trajectory design: lunar orbit insertion through science. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario, August 2–5, 2010 (2010). Paper AIAA 2010-8385 Google Scholar
  19. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem, and Space Mission Design. Springer, New York (2007) zbMATHGoogle Scholar
  20. Mora, M.B., Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Hechler, M.: A systematic analysis on weak stability boundary transfers to the Moon. IAF-00-A.6.03 (2003) Google Scholar
  21. Ockels, W.J., Biesbroek, R.: Genetic algorithms used to determine WSB trajectories for LunarSat Mission. In: Proceedings of Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space 1–3, June 1999 (1999) Google Scholar
  22. Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design. Deep Space Communication and Navigation Series. Wiley, New York (2013) Google Scholar
  23. Roncoli, R.B., Fujii, K.K.: Mission design overview for Gravity Recovery and Interior Laboratory (GRAIL) mission. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario, August 2–5, 2010 (2010). Paper AIAA 2010-8383 Google Scholar
  24. Topputo, F., Belbruno, E., Gidea, M.: Resonant motion, ballistic escape, and their applications in astrodynamics. Adv. Space Res. 42, 1318–1329 (2008) ADSCrossRefGoogle Scholar
  25. Uesugi, K.: Results of the Muses-A “Hiten” mission. Adv. Space Res. 18(11), 69–72 (1996) ADSCrossRefGoogle Scholar
  26. Yamakawa, H.: On Earth-Moon transfer trajectory with gravitational capture. PhD thesis, University of Tokyo (1992) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Applied Mathematics DivisionVikram Sarabhai Space CentreThiruvananthapuramIndia
  2. 2.Indian Institute of Space TechnologyThiruvananthapuramIndia

Personalised recommendations