Using GALEX-SDSS-PanSTARRS-HST-Gaia to understand post-AGB evolution

  • Luciana Bianchi
  • Graziela R. Keller
  • Ralph Bohlin
  • Martin Barstow
  • Sarah Casewell
Original Article
Part of the following topical collections:
  1. UV Surveys, the Needs and the Means


Hot WDs in binary systems with a less evolved star are particularly invaluable astrophysical probes, the unevolved companion enabling better derivation of distance and age than is usually possible for post-AGB objects, and therefore also of their radius and luminosity. But hot white dwarfs (WD) are elusive at all wavelengths except the UV (Bianchi et al. 2011a). From our GALEX UV source catalogs (Bianchi et al. 2011a,b, 2014, 2017) matched to SDSS, we identified thousands of candidate hot WDs including WDs in binary systems consisting of a hot WD and a companion of spectral type from A to M. The identification and preliminary characterization of the stellar parameters is based on the analysis of the photometric SED from far-UV to z-band.

We have observed subsamples of the UV-selected WDs with the Hubble Space Telescope (HST) to better characterize their stellar parameters. We obtained (1) UV spectroscopy with STIS and analyzed the UV spectra together with optical SDSS spectra, and (2) multi-band imaging with WFC3 (\(0.04^{\prime\prime}/\mbox{pixel}\)) to measure angular separation and individual SEDs of the pair’s components in binary systems. In our HST/WFC3 sample of 59 hot-WD binaries with late-type companions, we found that at least a dozen have possibly evolved without exchanging mass. The UV STIS spectroscopy led to the revision of previous results based on optical spectra only, because of the often undetectable or unquantifiable contribution of the hot component to the optical fluxes.


Astronomical data bases: surveys Stars: white dwarfs Stars: AGB and post-AGB Stars: binaries: general (Stars:) variables Galaxy: stellar content 



The work made use of GALEX, SDSS, and Gaia data downloaded from the MAST archive, and of data from HST programs HST-GO-13397 and HST-GO-14119 (L. Bianchi P.I.). Support for Program numbers HST-GO-13397 and HST-GO-14119 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.


  1. Babusiaux, C., van Leeuwen, F., Barstow, M.A., et al. (Gaia collaboration): Astron. Astrophys. (2018, in press) Google Scholar
  2. Bianchi, L., Shiao, B., et al.: (2018a, in preparation) Google Scholar
  3. Bianchi, L., Keller, G., et al.: (2018b, in preparation) Google Scholar
  4. Bianchi, L., et al.: Mon. Not. R. Astron. Soc. 411, 2770 (2011a). ADSCrossRefGoogle Scholar
  5. Bianchi, L., Herald, J., Efremova, B., et al.: Astrophys. Space Sci. 335, 161 (2011b). ADSCrossRefGoogle Scholar
  6. Bianchi, L., Conti, A., Shiao, B.: Adv. Space Res. 53, 900–912 (2014) ADSCrossRefGoogle Scholar
  7. Bianchi, L., Shiao, B., Thilker, D.: Astrophys. J. Suppl. Ser. 230, 24 (2017) ADSCrossRefGoogle Scholar
  8. Caballero-Nieves, S., et al.: Astrophys. J. 147, 40 (2014) Google Scholar
  9. Cummings, et al.: Astrophys. J. (2018, in preparation) Google Scholar
  10. di Criscienzo, M., et al.: Mon. Not. R. Astron. Soc. 462(1), 395 (2016) ADSCrossRefGoogle Scholar
  11. Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U.G., Nordlund, Å., Plez, B.: Astron. Astrophys. 486, 951 (2008) ADSCrossRefGoogle Scholar
  12. Heller, R., Homeier, D., Dreizler, S., Ostensen, R.: Astron. Astrophys. 496, 191 (2009) ADSCrossRefGoogle Scholar
  13. Herwig, F.: Annu. Rev. Astron. Astrophys. 43, 435 (2005) ADSCrossRefGoogle Scholar
  14. Holberg, J.B., Sion, E.M., Oswalt, T., McCook, G.P., Foran, S., Subasavage, J.P.: Astron. J. 135, 1225 (2008) ADSCrossRefGoogle Scholar
  15. Holberg, J., et al.: Astron. J. 143, 68 (2012) ADSCrossRefGoogle Scholar
  16. Holberg, J., et al.: Mon. Not. R. Astron. Soc. 435, 2077 (2013) ADSCrossRefGoogle Scholar
  17. Hubeny, I., Lanz, T.: Astrophys. J. 439, 875 (1995) ADSCrossRefGoogle Scholar
  18. Karakas, A.I.: Mon. Not. R. Astron. Soc. 403, 1413 (2010) ADSCrossRefGoogle Scholar
  19. Karakas, A., Lugaro, M.: JPS Conf. Proc. 14, 010403 (2017). Google Scholar
  20. Karakas, A.I., Lattanzio, J.C., Pols, O.R.: Publ. Astron. Soc. Aust. 19(4), 515 (2002) ADSCrossRefGoogle Scholar
  21. Karakas, A., et al.: Mon. Not. R. Astron. Soc. 477, 421 (2018) ADSCrossRefGoogle Scholar
  22. Keller, G.R., Bianchi, L., et al.: (2018, in preparation) Google Scholar
  23. Kepler, S.O., Kleinman, S.J., Nitta, A., Koester, D., Castanheira, B.G., Giovannini, O., Costa, A.F.M., Althaus, L.: Mon. Not. R. Astron. Soc. 375, 1315 (2007) ADSCrossRefGoogle Scholar
  24. Maoz, D., et al.: Annu. Rev. Astron. Astrophys. 52, 187 (2014) CrossRefGoogle Scholar
  25. Marigo, P.: Astron. Astrophys. 370, 194 (2001) ADSCrossRefGoogle Scholar
  26. Marigo, P.: In: IAUS 283: Planetary Nebulae: an Eye to the Future, p. 87 (2012) Google Scholar
  27. Moe, M., di Stefano, R.: arXiv:1606.05347 (2016)
  28. Rebassa-Mansergas, A., et al.: Mon. Not. R. Astron. Soc. 402, 620 (2010) ADSCrossRefGoogle Scholar
  29. Rebassa-Mansergas, A., et al.: Mon. Not. R. Astron. Soc. 419, 806 (2012) ADSCrossRefGoogle Scholar
  30. Sana, H.: In: IAUS 329: The Lives and Death-Throes of Massive Stars, p. 110 (2017) Google Scholar
  31. Sion, E.: S1, arXiv:1111.6652 (2011)
  32. Ventura, P., et al.: Mon. Not. R. Astron. Soc. 477, 438 (2018) ADSCrossRefGoogle Scholar
  33. Weiss, A., Ferguson, J.W.: Astron. Astrophys. 508, 1343 (2009) ADSCrossRefGoogle Scholar
  34. Yungelson, R., Livio, M.: Astrophys. J. 528, 108 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics & AstronomyThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Science Systems and Applications, Inc.LanhamUSA
  3. 3.Space Telescope Science InstituteBaltimoreUSA
  4. 4.Department of Physics & AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations