Physical association and periodicity in quasar families with SDSS and 2MRS

  • C. C. FultonEmail author
  • H. C. Arp
  • J. G. Hartnett
Original Paper


We have used the Sloan Digital Sky Survey (SDSS) data release 7 (DR7) and the 2MASS (Two Micron All Sky Survey) Redshift Survey (2MRS) \(K_{s} \le11.75~\mbox{mag}\) data release to test for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We conducted this analysis using the quasar family detection algorithm described in Fulton and Arp (Astrophys. J. 754:134, 2012) and used therein to analyze the 2dF Galaxy Redshift Survey (2dFGRS) and the 2dF Quasar Redshift Survey (2QZ). The SDSS and 2MRS data sets confirm the 2dF results and allow us to examine additional object behaviors also at high significance.


Galaxies: active Galaxies: distances and redshifts Quasars: general Redshifts 


  1. Abazajian, K.N., Adelman-McCarthy, J.K., Agüeros, M.A., et al.: Astrophys. J. Suppl. Ser. 182, 543 (2009) ADSCrossRefGoogle Scholar
  2. Croom, S.M., Smith, R.J., Boyle, B.J., et al.: Mon. Not. R. Astron. Soc. 322, 29 (2001) ADSCrossRefGoogle Scholar
  3. Fulton, C.C., Arp, H.C.: Astrophys. J. 754, 134 (2012). (Paper I) ADSCrossRefGoogle Scholar
  4. Hartnett, J.G.: Astrophys. Space Sci. 324, 13 (2009) ADSCrossRefGoogle Scholar
  5. Huchra, J.P., Macri, L.M., Masters, K.L., et al.: Astrophys. J. Suppl. Ser. 199, 26 (2012) ADSCrossRefGoogle Scholar
  6. Karlsson, K.G.: Astron. Astrophys. 13, 333 (1971) ADSGoogle Scholar
  7. Karlsson, K.G.: Nat. Phys. Sci. 245, 68 (1973) ADSCrossRefGoogle Scholar
  8. Karlsson, K.G.: Astron. Astrophys. 58, 273 (1977) ADSGoogle Scholar
  9. Narlikar, J., Arp, H.: Astrophys. J. 405, 51 (1993) ADSCrossRefGoogle Scholar
  10. Richards, G.T., Xiaohui, F., Newberg, H.J., et al.: Astron. J. 123, 2945 (2002) ADSCrossRefGoogle Scholar
  11. Sadler, E.M., Jackson, C.A., Cannon, R.D., et al.: Mon. Not. R. Astron. Soc. 329, 227 (2002) ADSCrossRefGoogle Scholar
  12. Schneider, D.P., Richards, G.T., Hall, P.B., et al.: Astron. J. 139, 2360 (2010) ADSCrossRefGoogle Scholar
  13. Scranton, R., Ménard, B., Richards, G.T., et al.: Astrophys. J. 633, 589 (2005) ADSCrossRefGoogle Scholar
  14. Shen, Y., Richards, G.T., Strauss, M.A., et al.: Astrophys. J. Suppl. Ser. 194, 45 (2011) ADSCrossRefGoogle Scholar
  15. Skrutskie, M.F., Cutri, R.M., Stiening, R., et al.: Astron. J. 131, 1163 (2006) ADSCrossRefGoogle Scholar
  16. York, D.G., Adelman, J., Anderson, J.E. Jr., et al.: Astron. J. 120, 1579 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dept of PhysicsThe University of Western AustraliaCrawleyAustralia
  2. 2.Max-Planck-Institut für AstrophysikGarchingGermany
  3. 3.Institute for Photonics & Advanced Sensing (IPAS), and, the School of Physical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations