Advertisement

Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models

  • Kutubuddin Ansari
  • Sampad Kumar Panda
  • Ozsen Corumluoglu
Original Article

Abstract

The present study examines the ionospheric Total Electron Content (TEC) variations in the lower mid-latitude Turkish region from the Turkish permanent GNSS network (TPGN) and International GNSS Services (IGS) observations during the years 2009 to 2017. The corresponding vertical TEC (VTEC) predicted by Kriging and NeQuick-2 models are evaluated to realize their efficacy over the country. We studied the diurnal, seasonal and spatial pattern of VTEC variation and tried to estimate by a new mathematical model using the long term of 9 years VTEC data. The diurnal variation of VTEC demonstrates a normal trend with its gradual enhancement from dawn to attain a peak around 09:00–14.00 UT and reaching the minimum level after 22.00 UT. The seasonal behavior of VTEC indicates a strong semi-annual variation of VTEC with maxima in September equinox followed by March equinox and minima in June solstice followed by December solstice. Also, the spatial variation in VTEC depicts a meaningful longitudinal/latitudinal pattern altering with seasons. It decreases longitudinally from the west to the east during March equinox and June solstice increases with latitude. The comparative analysis among the GNSS-VTEC, Kriging, NeQuick and the proposed mathematical model are evaluated with the help one way ANOVA test. The analysis shows that the null hypothesis of the models during storm and quiet days are accepted and suggesting that all models are statistically significantly equivalent from each other. We believe the outcomes from this study would complement towards a relatively better understanding of the lower mid-latitude VTEC variation over the Turkish region and analogous latitudes over the globe.

Keywords

Kriging TPGN NeQuick 

References

  1. Ansari, K., Corumluoglu, O.: Ionospheric observation over Turkey by using Turkish permanent GPS. In: Stations International Conference on Agricultural, Civil and Environmental Engineering (ACEE-16), Istanbul, Turkey, pp. 32–36 (2016).  https://doi.org/10.17758/URUAE.AE0416224 Google Scholar
  2. Ansari, K., Althuwaynee, O.F., Corumluoglu, O.: Monitoring and prediction of precipitable water vapor using GPS data in Turkey. J. Appl. Geophys. 10(4), 233–245 (2016).  https://doi.org/10.1515/jag-2016-0037 ADSGoogle Scholar
  3. Ansari, K., Corumluoglu, O., Panda, S.K.: Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys. Space Sci. 332, 65 (2017a).  https://doi.org/10.1007/s10509-017-3043-x ADSCrossRefGoogle Scholar
  4. Ansari, K., Panda, S.K., Althuwaynee, O.F., Corumluoglu, O.: Ionospheric TEC from the Turkish Permanent GNSS Network (TPGN) and comparison with ARMA and IRI models. Astrophys. Space Sci. 362, 178 (2017b).  https://doi.org/10.1007/s10509-017-3159-z ADSCrossRefGoogle Scholar
  5. Ansari, K., Corumluoglu, O., Verma, P.: The triangulated affine transformation parameters and barycentric coordinates of Turkish permanent GPS network. Surv. Rev. 1–4 (2017c).  https://doi.org/10.1080/00396265.2017.1297016
  6. Ansari, K., Corumluoglu, O., Verma, P., Pavelyev, V.S.: An overview of IGS service. GRENZE Int. J. Comput. Theory Eng. 3(4), 54–58 (2017d) Google Scholar
  7. Bagiya, M.S., Iyer, K.N., Joshi, H.P., Thampi, S.V., Tsugawa, T., Ravindran, S., Sridharan, R., Pathan, B.M.: Low-latitude ionospheric–thermospheric response to storm time electrodynamical coupling between high and low latitudes. J. Geophys. Res. 116(A1), A01303 (2011). https://doi.wiley.com/10.1029/2010JA015845 ADSCrossRefGoogle Scholar
  8. Bidaine, B., Warnant, R.: Ionospheric modeling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion. Adv. Space Res. 47(2), 312–322 (2011). http://www.sciencedirect.com/science/article/pii/S027311771000596X ADSCrossRefGoogle Scholar
  9. Cander, L.R.: Towards forecasting and mapping ionospheric space weather under COST actions. Adv. Space Res. 31(4), 957–964 (2003). http://www.sciencedirect.com/science/article/pii/S0273117702007937 ADSCrossRefGoogle Scholar
  10. Chauhan, V., Singh, O.P.: A morphological study of GPS-TEC data at Agra and their comparison with the IRI model. Adv. Space Res. 46(3), 280–290 (2010). http://www.sciencedirect.com/science/article/pii/S0273117710001894 ADSCrossRefGoogle Scholar
  11. Cressie, N.A.C.: Statistics for Spatial Data, rev. edn. Wiley, New York (2010), EUA, 1993 MATHGoogle Scholar
  12. Crujeiras, R.M., Keilegom, I.V.: Least squares estimation of nonlinear spatial trends. Comput. Stat. Data Anal. 54, 452–465 (2010).  https://doi.org/10.1016/j.csda.2009.09.014 MathSciNetCrossRefMATHGoogle Scholar
  13. Di Giovanni, G., Radicella, S.M.: An analytical model of the electron density profile in the ionosphere. Adv. Space Res. 10(11), 27–30 (1990). http://www.sciencedirect.com/science/article/pii/027311779090301F ADSCrossRefGoogle Scholar
  14. Farah, A.M.A.: Comparison of GPS/Galileo single frequency ionospheric model with vertical TEC maps. Artif. Satell. 43(2), 75–90 (2008).  https://doi.org/10.2478/v10018-009-0008-5 ADSGoogle Scholar
  15. Galav, P., Dashora, N., Sharma, S., Pandey, R.: Characterization of low latitude GPS-TEC during very low solar activity phase. J. Atmos. Sol.-Terr. Phys. 72(17), 1309–1317 (2010). http://www.sciencedirect.com/science/article/pii/S1364682610002774 ADSCrossRefGoogle Scholar
  16. Jodogne, J.C., Nebdi, H., Warnant, R.: GPS and ITEC from Digisonde data compared with NeQuick model. Adv. Radio Sci. 2, 269–273 (2004).  https://doi.org/10.5194/ars-2-269-2004 ADSCrossRefGoogle Scholar
  17. Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., De Jesus, R., De Abreu, A.J., Vesnin, A.M.: Numerical modeling of ionospheric effects in the middle-and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005. Radio Sci. 46(3), RS0D03 (2011). 2011.  https://doi.org/10.1029/2010RS004590 CrossRefGoogle Scholar
  18. Kouris, S.S., Polimeris, K.V., Cander, L.R.: Specifications of TEC variability. Adv. Space Res. 37(5), 983–1004 (2006).  https://doi.org/10.1016/j.asr.2005.01.102 ADSCrossRefGoogle Scholar
  19. Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M., He, M.: Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements. J. Geophys. Res. 114, A02302 (2009).  https://doi.org/10.1029/2008JA013819 ADSCrossRefGoogle Scholar
  20. Liu, G., Huang, W., Shen, H., Gong, J.: Vertical TEC variations and model during low solar activity at a low latitude station, Xiamen. Adv. Space Res. 49(3), 530–538 (2012). http://www.sciencedirect.com/science/article/pii/S0273117711007575 ADSCrossRefGoogle Scholar
  21. Mao, T., Wan, W., Yue, X., Sun, L., Zhao, B., Guo, J.: An empirical orthogonal function model of total electron content over China. Radio Sci. 43(2), RS2009 (2008).  https://doi.org/10.1029/2007RS003629 ADSCrossRefGoogle Scholar
  22. McKinnell, L.A., Poole, A.W.: Neural network-based ionospheric modelling over the South African region. South Afr. J. Sci. 100(11–12), 519–523 (2004). https://journals.co.za/content/sajsci/100/11-12/EJC96195 Google Scholar
  23. Natali, M.P., Meza, A.: PCA and vTEC climatology at midnight over mid-latitude regions. Earth Planets Space 69(1), 168 (2017).  https://doi.org/10.1186/s40623-017-0757-5 ADSCrossRefGoogle Scholar
  24. Nava, B., Coïsson, P., Amarante, G.M., Azpilicueta, F., Radicella, S.M.: A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion. Ann. Geophys. 48(2), 313–320 (2005). http://sedici.unlp.edu.ar/handle/10915/34259 Google Scholar
  25. Nava, B., Coïsson, P., Radicella, S.M.: A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 70, 1856–1862 (2008).  https://doi.org/10.1016/j.jastp.2008.01.015 ADSCrossRefGoogle Scholar
  26. Nigussie, M., Radicella, S.M., Damtie, B., Nava, B., Yizengaw, E., Ciraolo, L.: TEC ingestion into NeQuick 2 to model the East African equatorial ionosphere. Radio Sci. 47(5), RS5002 (2012).  https://doi.org/10.1029/2012RS004981 ADSCrossRefGoogle Scholar
  27. Nigussie, M., Damtie, B., Yizengaw, E., Radicella, S.M.: Modeling the East African Ionosphere. Ionospheric Space Weather: Longitude and Hemispheric Dependences and Lower Atmosphere Forcing, 207–224 (2016) Google Scholar
  28. Orus, R., Hernandez-Pajares, M., Juan, J.M., Sanz, J.: Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J. Atmos. Sol.-Terr. Phys. 67(16), 1598–1609 (2005). http://www.sciencedirect.com/science/article/pii/S1364682605001744 ADSCrossRefGoogle Scholar
  29. Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian sub continental region. Adv. Space Res. 55(8), 1948–1964 (2015a).  https://doi.org/10.1016/j.asr.2014.09.004 ADSCrossRefGoogle Scholar
  30. Panda, S.K., Gedam, S.S., Rajaram, G., Sripathi, S., Bhaskar, A.: Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region. J. Atmos. Sol.-Terr. Phys. 135, 181–191 (2015b).  https://doi.org/10.1016/j.jastp.2015.11.004 ADSCrossRefGoogle Scholar
  31. Radicella, S.M., Leitinger, R.: The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 27(1), 35–40 (2001).  https://doi.org/10.1016/S0273-1177(00)00138-1 ADSCrossRefGoogle Scholar
  32. Radicella, S.M., Nava, B., Coïsson, P.: Ionospheric models for GNSS single frequency range delay corrections. Fís. Tierra 20, 27–39 (2008). http://revistas.ucm.es/index.php/FITE/article/view/FITE0808110027A/11464 Google Scholar
  33. Ratnam, D.V., Sivavaraprasad, G., Devi, N.S.M.P.L.: Analysis of ionosphere variability over low-latitude GNSS stations during 24th solar maximum period. Adv. Space Res. (2016).  https://doi.org/10.1016/j.asr.2016.08.041 Google Scholar
  34. Samardjiev, T., Bradley, P.A., Cander, L.R., Dick, M.I.: Ionospheric mapping by computer contouring techniques. Electron. Lett. 29(20), 1794–1795 (1993). http://ieeexplore.ieee.org/abstract/document/274922/ ADSCrossRefGoogle Scholar
  35. Seemala, G.K., Valladares, C.E.: Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46(5), 1–14 (2011).  https://doi.org/10.1029/2011RS004722 CrossRefGoogle Scholar
  36. Sparks, L., Blanch, J., Pandya, N.: Estimating ionospheric delay using kriging: 1. Methodol., Radio Sci. 46(6), RS0D21 (2011).  https://doi.org/10.1029/2011RS004667 Google Scholar
  37. Stanislawska, I., Juchnikowski, G., Hanbaba, R., Rothkael, H., Sole, G., Zbyszynski, Z.: COST 251 recommended instantaneous mapping model of ionospheric characteristics, PLES. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 25(4), 291–294 (2000).  https://doi.org/10.1016/S1464-1917(00)00019-2 ADSGoogle Scholar
  38. Stanislawska, I., Juchnikowski, G., Cander, L.R., Ciraolo, L., Bradley, P.A., Zbyszynski, Z., Swiatek, A.: The kriging method of TEC instantaneous mapping. Adv. Space Res. 29(6), 945–948 (2002). 2002.  https://doi.org/10.1016/S0273-1177(02)00050-9 ADSCrossRefGoogle Scholar
  39. Zhao, B., Wan, W., Liu, L., Ren, Z.: Characteristics of the ionospheric total electron content of the equatorial ionization anomaly in the Asian-Australian region during 1996–2004. Ann. Geophys. 27(10), 3861–3873 (2009). http://www.ann-geophys.net/27/3861/2009 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Geomatics EngineeringKathmandu UniversityDhulikhelNepal
  2. 2.Department of ECEKoneru Lakshmaiah Education FoundationGunturIndia
  3. 3.Department of Geomatics EngineeringIzmir Katip Celebi UniversityIzmirTurkey

Personalised recommendations