Advertisement

Gravitational attraction until relativistic equipartition of internal and translational kinetic energies

  • I. E. BulyzhenkovEmail author
Original Article

Abstract

Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton’s physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.

Keywords

Internal energy variable GR principle of equipartition Equilibrium proximity Decelerated fall Accelerated takeoff Thermal propulsion 

Notes

Acknowledgement

I am very grateful to Shpetim Nazarko for his ICNFP-2015 conference poster and for useful discussions.

References

  1. Bulyzhenkov, I.E.: Int. J. Theor. Phys. 47, 1261 (2008) CrossRefGoogle Scholar
  2. Bulyzhenkov, I.E., Pure Field Electrodynamics of Continuous Complex Charges. MIPT (State University), Moscow (2015). 4th year tutorial in Nonlinear Electrodynamics. ISBN 978-5-7417-0554-4. Bull. Lebedev Phys. Inst., 43, 138 (2016) Google Scholar
  3. Einstein, A.: Ann. Phys. 49, 769 (1916) CrossRefGoogle Scholar
  4. Einstein, A.: Ann. Math. 40, 922 (1939) ADSMathSciNetCrossRefGoogle Scholar
  5. Einstein, A., Grossmann, M.: Z. Math. Phys. 62, 225 (1913) Google Scholar
  6. Einstein, A., Infeld, L.: The Evolution of Physics. Cambridge University Press, Cambridge (1938) zbMATHGoogle Scholar
  7. Garber, D.: Descartes’ Metaphysical Physics. University of Chicago Press, Chicago (1992) Google Scholar
  8. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1962) Google Scholar
  9. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 4th edn. Course of Theoretical Physics Series, vol. 2 (1980). Butterworth-Heinemann zbMATHGoogle Scholar
  10. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Course of Theoretical Physics Series, vol. 6. Pergamon Press, Oxford (1987) zbMATHGoogle Scholar
  11. Logunov, A.A.: The Theory of Gravity. Nauka, Moscow (2001) zbMATHGoogle Scholar
  12. Mosengeil, K.: Ann. Phys. (Leipz.) 327, 867 (1907) ADSCrossRefGoogle Scholar
  13. Schwarzschild, K.: In: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), p. 189 (1916) Google Scholar
  14. Umov, N.A.: Beweg-Gleich. d. Energie in contin. Korpern. (Schomilch, Zeitschriff d. Math. und Phys., vol. XIX, 1874). Selected works (in Russian), Izd. TTL (1950) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia
  2. 2.Lebedev Physics Institute RASMoscowRussia

Personalised recommendations