Analysis of impulsive maneuvers to keep orbits around the asteroid 2001SN263

  • Willer G. SantosEmail author
  • Antonio F. B. A. Prado
  • Geraldo M. C. Oliveira
  • Leonardo B. T. Santos
Original Article


The strongly perturbed environment of a small body, such as an asteroid, can complicate the prediction of orbits used for close proximity operations. Inaccurate predictions may make the spacecraft collide with the asteroid or escape to the deep space. The main forces acting in the dynamics come from the solar radiation pressure and from the body’s weak gravity field. This paper investigates the feasibility of using bi-impulsive maneuvers to avoid the aforementioned non-desired phenomena (collisions and escapes) by connecting orbits around the triple system asteroid 2001SN263, which is the target of a proposed Brazilian space mission. In terms of a mathematical formulation, a recently presented rotating dipole model is considered with oblateness in both primaries. In addition, a “two-point boundary value problem” is solved to find a proper transfer trajectory. The results presented here give support to identifying the best strategy to find orbits for close proximity operations, in terms of long orbital lifetimes and low delta-\(V\) consumptions. Numerical results have also demonstrated the significant influence of the spacecraft orbital elements (semi-major axis and eccentricity), angular position of the Sun and spacecraft area-to-mass ratio, in the performance of the bi-impulsive maneuver.


Impulsive maneuvers Near-earth asteroids Close proximity operations Irregular bodies Astrodynamics 



The authors wish to express his appreciation to the Brazilian National Institute for Space Research (INPE) for all provided structure and facilities. The authors also thank the financial support, grants number 312992/2015-7, 406841/2016-0, and 301338/2016-7, received from the National Council for Scientific and Technological Department (CNPq); grants number 2016/14665-2, 2016/24561-0, and 2016/18418-0 from the São Paulo Research Foundation (FAPESP).

Supplementary material

10509_2017_3234_MOESM1_ESM.rar (2.4 mb)
(RAR 2.4 MB)


  1. Araujo, R., Winter, O., Prado, A., Sukhanov, A.: Mon. Not. R. Astron. Soc. 423(4), 3058 (2012) ADSCrossRefGoogle Scholar
  2. Barucci, M.A., Cheng, A., Michel, P., Benner, L., Binzel, R., Bland, P., Böhnhardt, H., Brucato, J., Bagatin, A.C., Cerroni, P., et al.: Exp. Astron. 33(2–3), 645 (2012) ADSCrossRefGoogle Scholar
  3. Becker, T.M., Howell, E.S., Nolan, M.C., Magri, C., Pravec, P., Taylor, P.A., Oey, J., Higgins, D., Világi, J., Kornoš, L., et al.: Icarus 248, 499 (2015) ADSCrossRefGoogle Scholar
  4. Bowell, E., Muinonen, K., Wasserman, L.H.: In: Symposium-International Astronomical Union, vol. 160, p. 477. Cambridge University Press, Cambridge (1994) Google Scholar
  5. Broschart, S.B., Scheeres, D.J.: J. Guid. Control Dyn. 28(2), 343 (2005) ADSCrossRefGoogle Scholar
  6. Broschart, S.B., Scheeres, D.J., Villac, B.F.: Adv. Astronaut. Sci. 135(3), 1685 (2009) Google Scholar
  7. Broschart, S.B., Lantoine, G., Grebow, D.J.: Characteristics of quasi-terminator orbits near primitive bodies (2013) Google Scholar
  8. Chagas, R.A.J., Louro, A.C., de Sousa, F.L., Santos, W.G.: Satellite simulator for verification of mission operational concepts in pre-phase a studies 7th international conference on systems & concurrent engineering for space applications (2016) Google Scholar
  9. Chobotov, V.A.: Orbital Mechanics, 3rd edn. American Institute of Aeronautics and Astronautics, Reston (2002) zbMATHGoogle Scholar
  10. Giancotti, M., Campagnola, S., Tsuda, Y., Kawaguchi, J.: Celest. Mech. Dyn. Astron. 120(3), 269 (2014) ADSCrossRefGoogle Scholar
  11. Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: Space Sci. Rev. 128(1–4), 1 (2007) ADSCrossRefGoogle Scholar
  12. Goździewski, K., Maciejewski, A.J.: Celest. Mech. Dyn. Astron. 70(1), 41 (1998) ADSCrossRefGoogle Scholar
  13. Kikuchi, S., Tsuda, Y., Kawaguchi, J.: J. Guid. Control Dyn. 40(1), 150 (2017). ADSCrossRefGoogle Scholar
  14. Lauretta, D.S., Team, O.-R.: In: Lunar and Planetary Science Conference, vol. 43 (2012) Google Scholar
  15. Lewis, J.S.: Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets. Helix Book. Basic Books, New York (1996), 274 pp. ISBN 978-0201328196 Google Scholar
  16. Libourel, G., Corrigan, C.M.: Elements 10(1), 11 (2014) CrossRefGoogle Scholar
  17. Masago, B.Y.P.L., Prado, A.F.B.A., Chiaradia, A.P.M., Gomes, V.M.: Adv. Space Res. 57(4), 962 (2016). ADSCrossRefGoogle Scholar
  18. Nolan, M., Howell, E., Benner, L., Ostro, S., Giorgini, J., Busch, M., Carter, L., Anderson, R., Magri, C., Campbell, D., et al.: In: Asteroids, Comets, Meteors 2008, vol. 1405 (2008) Google Scholar
  19. Oliveira, G.M.C., Prado, A.F.B.d.A., Sanchez, D.M., Gomes, V.M.: In: 14th International Conference on Space Operations, p. 2558 (2016) Google Scholar
  20. Oliveira, G.M.C., Prado, A.F.B.d.A., Sanchez, D.M., Gomes, V.M.: Astrophys. Space Sci. 362(10), 187 (2017) ADSCrossRefGoogle Scholar
  21. Prado, A.F.: Adv. Space Res. 53(5), 877 (2014) ADSCrossRefGoogle Scholar
  22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007) zbMATHGoogle Scholar
  23. Prieto-Llanos, T., Gomez-Tierno, M.A.: J. Guid. Control Dyn. 17(4), 787 (1994) ADSCrossRefGoogle Scholar
  24. Russell, C., Raymond, C.: Space Sci. Rev. 163(1–4), 3 (2011) ADSCrossRefGoogle Scholar
  25. Santos, L.B.T., Prado, A.F.B.A., Sanchez, D.M.: Astrophys. Space Sci. 362(3), 61 (2017) ADSCrossRefGoogle Scholar
  26. Scheeres, D.J.: Mitigation of Hazardous Comets and Asteroids, 313 (2004) Google Scholar
  27. Scheeres, D.: arXiv:physics/0608158 (2006)
  28. Scheeres, D.: Acta Astronaut. 72, 1 (2012) ADSCrossRefGoogle Scholar
  29. Sharma, R.K., Rao, P.S.: Celest. Mech. 13(2), 137 (1976) ADSCrossRefGoogle Scholar
  30. Smith, P.L., Dawdy, A.B., Trafton, T.W., Novak, R.G., Presley, S.P.: Crosslink 2(1), 4 (2001) Google Scholar
  31. Sukhanov, A., Velho, H.d.C., Macau, E., Winter, O.: Cosm. Res. 48(5), 443 (2010) ADSCrossRefGoogle Scholar
  32. Surovik, D.A., Scheeres, D.J.: In: AIAA/AAS Astrodynamics Specialist Conference, p. 4147 (2014) Google Scholar
  33. Szebehely, V.: Theory of Orbit: The Restricted Problem of Three Bodies, 1st edn. Academic Press, New York (1967) zbMATHGoogle Scholar
  34. Tedesco, E.F., Desert, F.-X.: Astron. J. 123(4), 2070 (2002) ADSCrossRefGoogle Scholar
  35. Tsuda, Y., Yoshikawa, M., Abe, M., Minamino, H., Nakazawa, S.: Acta Astronaut. 91, 356 (2013) ADSCrossRefGoogle Scholar
  36. Vallado, D.A.: Fundamentals of Astrodynamics and Applications vol. 12. Springer, New York (2001) zbMATHGoogle Scholar
  37. Zeng, X., Alfriend, K.T.: Astrodyn. 1(1), 41 (2017) CrossRefGoogle Scholar
  38. Zeng, X., Liu, X.: Searching for time optimal periodic orbits near irregularly shaped asteroids by using an indirect method. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1221–1229 (2017). ADSCrossRefGoogle Scholar
  39. Zeng, X., Jiang, F., Li, J., Baoyin, H.: Astrophys. Space Sci. 356(1), 29 (2015) ADSCrossRefGoogle Scholar
  40. Zeng, X., Baoyin, H., Li, J.: Astrophys. Space Sci. 361(1), 14 (2016a) ADSCrossRefGoogle Scholar
  41. Zeng, X., Gong, S., Li, J., Alfriend, K.T.: Solar sail body-fixed hovering over elongated asteroids. J. Guid. Control Dyn. (2016b). Google Scholar
  42. Zeng, X.-Y., Liu, X.-D., Li, J.-F.: Res. Astron. Astrophys. 17(1), 2 (2017) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Willer G. Santos
    • 1
    Email author
  • Antonio F. B. A. Prado
    • 1
  • Geraldo M. C. Oliveira
    • 1
    • 2
  • Leonardo B. T. Santos
    • 1
  1. 1.Space Engineering DepartmentNational Institute for Space ResearchSão José dos CamposBrazil
  2. 2.Federal Center for Technological Education of Minas Gerais (CEFET-MG)ContagemBrazil

Personalised recommendations