Astrophysics and Space Science

, 362:227 | Cite as

Lifetime maps for orbits around Callisto using a double-averaged model

  • Josué Cardoso dos SantosEmail author
  • Jean P. S. Carvalho
  • Antônio F. B. A. Prado
  • Rodolpho Vilhena de Moraes
Original Article


The present paper studies the lifetime of orbits around a moon that is in orbit around its mother planet. In the context of the inner restricted three-body problem, the dynamical model considered in the present study uses the double-averaged dynamics of a spacecraft moving around a moon under the gravitational pulling of a disturbing third body in an elliptical orbit. The non-uniform distribution of the mass of the moon is also considered. Applications are performed using numerical experiments for the Callisto–spacecraft–Jupiter system, and lifetime maps for different values of the eccentricity of the disturbing body (Jupiter) are presented, in order to investigate the role of this parameter in these maps. The idea is to simulate a system with the same physical parameters as the Jupiter–Callisto system, but with larger eccentricities. These maps are also useful for validation and improvements in the results available in the literature, such as to find conditions to extend the available time for a massless orbiting body to be in highly inclined orbits under gravitational disturbances coming from the other bodies of the system.


Lifetime of orbits Double-average Third-body perturbation Orbital perturbations Moons, perturbation maps 



The authors wish to honor God for all the opportunities given during the development of this work. Special thanks are extended to reviewers for their valuable ideas and suggestions. The authors also acknowledge the support from UNESP, UFRB, INPE, UNIFESP. This work was sponsored by the São Paulo Research Foundation—FAPESP (processes 2013/26652-4, 2012/12539-9, 2016/24561-0, 2016/14665-2, 2012/21023-6, 2011/05671-5, 2011/08171-3) and the National Council for Scientific and Technological Development—CNPq (contracts 406841/2016-0, 301338/2016-7, 306953/2014-5, 420674/2016-0).


  1. Anderson, J.D., Jacobson, R.A., Lau, E.L., Moore, W.B., Schubert, G.: J. Geophys. Res. 106, 32963 (2001). doi: 10.1029/2000JE001367 ADSCrossRefGoogle Scholar
  2. Araujo, R.A.N., Winter, O.C., Prado, A.F.B.A.: Mon. Not. R. Astron. Soc. 449, 4404 (2015). doi: 10.1093/mnras/stv592. arXiv:1503.07546 ADSCrossRefGoogle Scholar
  3. Blitzer, L.: Am. J. Phys. 27, 634 (1959). doi: 10.1119/1.1934947 ADSMathSciNetCrossRefGoogle Scholar
  4. Boué, G., Laskar, J.: Icarus 201, 750 (2009) ADSCrossRefGoogle Scholar
  5. Broucke, R.A.: J. Guid. Control Dyn. 26, 27 (2003). doi: 10.2514/2.5041 ADSCrossRefGoogle Scholar
  6. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics (1961) zbMATHGoogle Scholar
  7. Cardoso dos Santos, J., Carvalho, J.P.S., Vilhena De Moraes, R., Prado, A.F.B.A.: In: International Astronautical Congress, Jerusalem, Israel, 12–16 October (2015). IAC paper C1.IP.4 Google Scholar
  8. Carvalho, J.P.S.: Orbital evolution of a solar sail around a planet. In: Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, vol. 4 (2016). doi: 10.5540/03.2016.004.01.0017 Google Scholar
  9. Carvalho, J.P.S., Vilhena de Moraes, R., Prado, A.F.B.A.: Celest. Mech. Dyn. Astron. 108, 371 (2010). doi: 10.1007/s10569-010-9310-6 ADSCrossRefGoogle Scholar
  10. Carvalho, J.P.S., Mourão, D.C., Elipe, A., Vilhena De Moraes, R., Prado, A.F.B.A.: Int. J. Bifurc. Chaos Appl. Sci. Eng. 22, 1250240 (2012a). doi: 10.1142/S0218127412502409 CrossRefGoogle Scholar
  11. Carvalho, J.P.S., Elipe, A., Vilhena De Moraes, R., Prado, A.F.B.A.: Adv. Space Res. 49, 994 (2012b). doi: 10.1016/j.asr.2011.11.036 ADSCrossRefGoogle Scholar
  12. Carvalho, J.P.S., de Moraes, R.V., Prado, A.F.B.A., Mourão, D.C., Winter, O.C.: Comput. Appl. Math. 35, 847 (2016a). doi: 10.1007/s40314-015-0270-z MathSciNetCrossRefGoogle Scholar
  13. Carvalho, J.P.S., Mourão, D.C., de Moraes, R.V., Prado, A.F.B.A., Winter, O.C.: Celest. Mech. Dyn. Astron. 124, 73 (2016b). doi: 10.1007/s10569-015-9650-3 ADSCrossRefGoogle Scholar
  14. Carvalho, J.P.S., Cardoso dos Santos, J., Prado, A.F.B.A., Vilhena De Moraes, R.: Some characteristics of orbits for a spacecraft around Mercury, Comput. Appl. Math. (2017). doi: 10.1007/s40314-017-0525-y
  15. Condoleo, E., Cinelli, M., Ortore, E., Circi, C.: J. Guid. Control Dyn. 39, 2264 (2016). doi: 10.2514/1.G000455 ADSCrossRefGoogle Scholar
  16. Domingos, R.C., Prado, A.F.B.A., Gomes, V.M.: Math. Probl. Eng. 2014, 359845 (2014). doi: 10.1155/2014/359845 CrossRefGoogle Scholar
  17. Domingos, R.C., Vilhena De Moraes, R., Prado, A.F.B.A.: Math. Probl. Eng. 2008, 763654 (2008). doi: 10.1155/2008/763654 CrossRefGoogle Scholar
  18. ESA: Juice Definition Study Report (red Book) (2014).
  19. Fang, J., Margot, J., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A.: Astron. J. 141, 154 (2011). doi: 10.1088/0004-6256/141/5/154 ADSCrossRefGoogle Scholar
  20. Farago, F., Laskar, J.: Mon. Not. R. Astron. Soc. 401, 1189 (2010). doi: 10.1111/j.1365-2966.2009.15711.x. arXiv:0909.2287 ADSCrossRefGoogle Scholar
  21. Ferrer, S., Osacar, C.: Celest. Mech. Dyn. Astron. 58, 245 (1994). doi: 10.1007/BF00691977 ADSCrossRefGoogle Scholar
  22. Giacaglia, G.E.O.: SAO Special Report, 352 (1973) Google Scholar
  23. Giacaglia, G.E.O., Murphy, J.P., Felsentreger, T.L.: Celest. Mech. 3, 3 (1970). doi: 10.1007/BF01230432 ADSCrossRefGoogle Scholar
  24. Giuliatti Winter, S.M., Winter, O.C., Vieira Neto, E., Sfair, R.: Mon. Not. R. Astron. Soc. 430, 1892 (2013). doi: 10.1093/mnras/stt015 ADSCrossRefGoogle Scholar
  25. Gomes, V., Domingos, R.C.: Comput. Appl. Math. 35, 653 (2016). doi: 10.1007/s40314-015-0258-8 MathSciNetCrossRefGoogle Scholar
  26. Hough, M.E.: Celest. Mech. 25, 111 (1981). doi: 10.1007/BF01230514 ADSCrossRefGoogle Scholar
  27. Kaula, W.M.: Astron. J. 67, 300 (1962). doi: 10.1086/108729 ADSCrossRefGoogle Scholar
  28. Kovalevsky, J. (ed.): Introduction to Celestial Mechanics. Astrophys. Space Sci. Library, vol. 7 (1967). doi: 10.1007/978-94-011-7545-6 zbMATHGoogle Scholar
  29. Kozai, Y.: On the effects of the sun and moon upon the motion of a close earth satellite. Technical report (1959) Google Scholar
  30. Kozai, Y.: Astron. J. 67, 591 (1962). doi: 10.1086/108790 ADSMathSciNetCrossRefGoogle Scholar
  31. Lara, M., Russell, R.: In: 2006 AAS/AIAA SpaceFlight Mechanics Meeting, Tampa, Florida, January 22–26 (2006). Google Scholar
  32. Lidov, M.L.: Planet. Space Sci. 9, 719 (1962). doi: 10.1016/0032-0633(62)90129-0 ADSCrossRefGoogle Scholar
  33. Liu, X., Baoyin, H., Ma, X.: Astrophys. Space Sci. 339, 295 (2012). doi: 10.1007/s10509-012-1015-8. arXiv:1203.1770 ADSCrossRefGoogle Scholar
  34. Meyer, K.W., Buglia, J.J., Desai, P.N.: NASA STI/Recon Technical Report N 94 (1994) Google Scholar
  35. Murray, C.D., Dermott, S.F.: Solar System Dynamics (2000) CrossRefzbMATHGoogle Scholar
  36. Musen, P., Bailie, A., Upton, E.: NASA Spec. Publ. 54, 24 (1965) ADSGoogle Scholar
  37. Naoz, S.: ArXiv e-prints (2016). arXiv:1601.07175
  38. Naoz, S., Farr, W.M., Lithwick, Y., Rasio, F.A., Teyssandier, J.: Nature 473, 187 (2011). doi: 10.1038/nature10076. arXiv:1011.2501 ADSCrossRefGoogle Scholar
  39. Naoz, S., Li, G., Zanardi, M., de Elía, G.C., Di Sisto, R.P.: ArXiv e-prints (2017). arXiv:1701.03795
  40. NASA: Mission to Europa (Acessed: January/2017).
  41. Ortiz, J.L., Santos-Sanz, P., Sicardy, B., et al.: Nature 550, 219 (2017). doi: 10.1038/nature24051 ADSCrossRefGoogle Scholar
  42. Paskowitz, M.E., Scheeres, D.J.: J. Guid. Control Dyn. 29, 1147 (2006). doi: 10.2514/1.19464 ADSCrossRefGoogle Scholar
  43. Prado, A.F.B.A.: J. Guid. Control Dyn. 26, 33 (2003). doi: 10.2514/2.5042 ADSCrossRefGoogle Scholar
  44. Prado, A.F.B.A.: Adv. Space Res. 53, 877 (2014). doi: 10.1016/j.asr.2013.12.034 ADSCrossRefGoogle Scholar
  45. Scheeres, D.J., Guman, M.D., Villac, B.F.: J. Guid. Control Dyn. 24, 778 (2001). doi: 10.2514/2.4778 ADSCrossRefGoogle Scholar
  46. Sehnal, L.: Bull. Astron. Inst. Czechoslov. 11, 90 (1960) ADSGoogle Scholar
  47. Tresaco, E., Elipe, A., Carvalho, J.P.S.: J. Guid. Control Dyn. 39(7), 1659 (2016). doi: 10.2514/1.G001510 ADSCrossRefGoogle Scholar
  48. Vilhena De Moraes, R., Costa, M.L.G.T.X., Carvalho, J.P.S., Prado, A.F.B.A.: In: International Astronautical Congress, Guadalajara, Mexico, 26–30 September (2016). IAC paper C1,6,10,x35324 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Josué Cardoso dos Santos
    • 1
    Email author
  • Jean P. S. Carvalho
    • 2
  • Antônio F. B. A. Prado
    • 3
  • Rodolpho Vilhena de Moraes
    • 4
  1. 1.São Paulo State University (UNESP)GuaratinguetáBrazil
  2. 2.Universidade Federal do Recôncavo da Bahia (UFRB)Feira de SantanaBrazil
  3. 3.National Institute for Space Research (INPE)São José dos CamposBrazil
  4. 4.Federal University of São Paulo (UNIFESP)São José dos CamposBrazil

Personalised recommendations