Advertisement

Prospect for UV observations from the Moon. II. Instrumental design of an ultraviolet imager LUCI

  • Joice Mathew
  • Ajin Prakash
  • Mayuresh Sarpotdar
  • A. G. Sreejith
  • K. Nirmal
  • S. Ambily
  • Margarita Safonova
  • Jayant Murthy
  • Noah Brosch
Original Article

Abstract

We present a design for a near-ultraviolet (NUV) imaging instrument which may be flown on a range of available platforms, including high-altitude balloons, nanosatellites, or space missions. Although all current UV space missions adopt a Ritchey-Chrétien telescope design, this requires aspheric optics, making the optical system complex, expensive and challenging for manufacturing and alignment. An all-spherical configuration is a cost-effective and simple solution. We have aimed for a small payload which may be launched by different platforms and we have designed a compact, light-weight payload which will withstand all launch loads. No other UV payloads have been previously reported with an all-spherical optical design for imaging in the NUV domain and a weight below 2 kg. Our main science goal is focused on bright UV sources not accessible by the more sensitive large space UV missions.

Here we discuss various aspects of design and development of the complete instrument, the structural and finite-element analysis of the system performed to ensure that the payload withstands launch-load stresses and vibrations. We expect to fly this telescope—Lunar Ultraviolet Cosmic Imager (LUCI)—on a spacecraft to the Moon as part of the Indian entry into Google X-Prize competition. Observations from the Moon provide a unique opportunity to observe the sky from a stable platform far above the Earth’s atmosphere. However, we will explore other opportunities as well, and will fly this telescope on a high-altitude balloon later this year.

Keywords

Opto-mechanical design Space instrumentation Telescope UV astronomy 

Notes

Acknowledgements

We are grateful for the collaboration with Team Indus and for the fruitful discussions regarding the LUCI payload. We also thank LEOS, ISRO for their technical support in gluing the optics with the mounts. We thank all the staff at M.G.K Menon laboratory (CREST) for helping us with storage and assembly of optics in the clean room environment. We would like to thank Dr. R. Sridharan, Mr. S. Sriram, Mr. S. Nagabushana, Mr. Suresh Venkata, Mr. P. Umesh Kamath and Mr. P. K. Mahesh of the Indian Institute of Astrophysics for their valuable suggestions. Part of this research has been supported by the Department of Science and Technology (Government of India) under Grant IR/S2/PU-006/2012.

References

  1. Ariane 5 User’s Manual, 2011, Issue 5, Revision 1 Google Scholar
  2. Brosch, N.: Astrophys. Space Sci. 320, 207 (2009) ADSCrossRefGoogle Scholar
  3. Brosch, N., Balabanov, V., Behar, E.: Astrophys. Space Sci. 354, 205 (2014) ADSCrossRefGoogle Scholar
  4. Cao, L., Ruan, P., Cai, H., Deng, J., et al.: Sci. China, Phys. Mech. Astron. 54, 558 (2011) ADSCrossRefGoogle Scholar
  5. Davidsen, A.F., Hartig, G.F., Fastie, W.G.: Nature 269, 203 (1977) ADSCrossRefGoogle Scholar
  6. Freniere, E.R., Gregory, G.G., Chase, R.C.: Proc. SPIE 3130, 128 (1997) ADSCrossRefGoogle Scholar
  7. Herbert, R.: Proc. Meeting on Asteroids and Comets in Europe (MACE) (2002) Google Scholar
  8. Henry, R.C.: Annu. Rev. Astron. Astrophys. 29, 89 (1991) ADSCrossRefGoogle Scholar
  9. Jeong, S., Nam, J.W., Ahn, K.B., Park, I.H., et al.: Opt. Express 21, 2263 (2013) ADSCrossRefGoogle Scholar
  10. Kumar, A., Ghosh, S.K., Hutchings, J., et al.: Proc. SPIE 8443, 84431N (2012) CrossRefGoogle Scholar
  11. Lee, J.H., Lee, C.W.: J. Opt. Soc. Korea 13, 193 (2009) CrossRefGoogle Scholar
  12. Li, Z., Chen, B., Song, K., Wang, X., et al.: Opt. Express 22, 15932 (2014) ADSCrossRefGoogle Scholar
  13. Moore, K.E., Valente, T.M.: Proc. SPIE 1167, 228 (1989) ADSCrossRefGoogle Scholar
  14. Nirmal, K., Sreejith, A.G., Mathew, J., Sarpotdar, M., Ambily, S., Prakash, A., Safonova, M., Murthy, J.: J. Astron. Telesc. Instrum. Syst. 2(4), 047001 (2016). doi: 10.1117/1.JATIS.2.4.047001. CrossRefGoogle Scholar
  15. Oke, J.B., Gunn, J.E.: Astrophys. J. 266, 713 (1983) ADSCrossRefGoogle Scholar
  16. Roming, P.W.A., Hunsberger, S.D., Mason, K.O., et al.: Proc. SPIE 5165, 262 (2014) CrossRefGoogle Scholar
  17. Safonova, M., Sivaram, C., Murthy, J.: Astrophys. Space Sci. 318, 1 (2008) ADSCrossRefGoogle Scholar
  18. Safonova, M., Mathew, J., Mohan, R., et al.: Astrophys. Space Sci. 353, 329 (2014) ADSCrossRefGoogle Scholar
  19. Sarpotdar, M., Mathew, J., Sreejith, A.G., Safonova, M., Murthy, J.: Proc. SPIE 9915, 99152K (2016) CrossRefGoogle Scholar
  20. Shustov, B., Gómez de Castro, A.I., Sachkov, M., Dopita, M.A.: Astrophys. Space Sci. 335, 273 (2011) ADSCrossRefGoogle Scholar
  21. Sreejith, A.G., Safonova, M., Murthy, J.: Proc. SPIE 9654, 96540D (2015) ADSCrossRefGoogle Scholar
  22. Sreejith, A.G., Mathew, J., Sarpotdar, M., et al.: Proc. SPIE 9908, 99084E (2016). Ground-based and Airborne Instrumentation for Astronomy VI CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Indian Institute of AstrophysicsBangaloreIndia
  2. 2.The Wise Observatory and the Dept. Of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations