Modeling of non-rotating neutron stars in minimal dilatonic gravity

Original Article


The model of minimal dilatonic gravity (MDG), called also the massive Branse-Dicke model with \(\omega =0\), is an alternative model of gravitation, which uses one Branse-Dicke gravitation-dilaton field \(\varPhi \) and offers a simultaneous explanation of the effects of dark energy (DE) and dark matter (DM). Here we present an extensive research of non-rotating neutron star models in MDG with four different realistic equations of state (EOS), which are in agreement with the latest observational data. The equations describing static spherically symmetric stars in MDG are solved numerically. The effects corresponding to DE and DM are clearly seen and discussed.


Extended gravity Neutron star Gravitational dilaton Equation of state 



Kalin Marinov wants to express gratitude to the “Program for career development of young scientists, Bulgarian Academy of Sciences” project “Extended theories of gravity and their application to physics of compact stars” N0 DFNP-51/21.04.2016. Plamen Fiziev is deeply indebted to the Directorate of the Laboratory of Theoretical Physics, JINR, Dubna, for the good working conditions and support.

He also owes gratitude to Alexei Starobinsky, Salvatore Capozziello, Sergei Odintsov, Mariafelicia De Laurentis, Alexander Zacharov, Luciano Rezzolla, Valeria Ferrari, Pawel Haensel, Alexander Potekhin and Fiorella Burgio for the stimulating discussions on different topics of the present publication.

Special thanks to Kazim Yavuz Ekşi for providing the numerical EOS data.

The authors are thankful to the unknown referee for the useful comments of the initial version o the paper. Especially, the present new Sect. 4 is our answer to the question raised by the referee.

This research was supported in part by the Foundation for Theoretical and Computational Physics and Astrophysics and by Bulgarian Nuclear Regulatory Agency Grants for 2014, 2015 and 2016 as well as by “NewCompStar”, COST Action MP 1304.


  1. Alsing, J., Berti, E., Will, C.M., Zaglauer, H.: Phys. Rev. D 85, 064041 (2012) ADSCrossRefGoogle Scholar
  2. Antoniadis, J., Freire, P.C.C., Wex, N., Tauris, T.M., Lynch, R.S., van Kerkwijk, M.H., Kramer, M., Bassa, C., Dhillon, V.S., Driebe, T., Hessels, J.W.T., Kaspi, V.M., Kondratiev, V.I., Langer, N., Marsh, T.R., McLaughlin, M.A., Pennucci, T.T., Ransom, S.M., Stairs, I.H., van Leeuwen, J., Verbiest, J.P.W., Whelan, D.G.: Science 340, 6131 (2013). doi: 10.1126/science.1233232 ADSCrossRefGoogle Scholar
  3. Appleby, S.A., Battye, R.A.: Phys. Lett. B 654, 7 (2007) ADSMathSciNetCrossRefGoogle Scholar
  4. Astashenok, A., Capozziello, S., Odintsov, S.: J. Cosmol. Astropart. Phys. 1312, 040 (2013). Eprint, arXiv:1309.1978 [gr-qc] ADSCrossRefGoogle Scholar
  5. Astashenok, A., Capozziello, S., Odintsov, S.: Phys. Rev. D 89, 103509 (2014). Eprint, arXiv:1401.4546 [gr-qc] ADSGoogle Scholar
  6. Astashenok, A., Capozziello, S., Odintsov, S.: Astrophys. Space Sci. 355(2), 333 (2015). doi: 10.1007/s10509-014-2182-6. Eprint, arXiv:1405.6663 [gr-qc] ADSCrossRefGoogle Scholar
  7. Astashenok, A., Capozziello, S., Odintsov, S.: Eprint, arXiv:1408.3856 [gr-qc] (2015). doi: 10.1088/1475-7516/2015/01/001
  8. Buhdahl, H.A.: Mon. Not. R. Astron. Soc. 150, 1 (1970) ADSCrossRefGoogle Scholar
  9. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. In: Fundamental Theories of Physics, vol. 170. Springer, Berlin (2011) Google Scholar
  10. Clifton, T., Ferreira, P., Padill, A., Skodis, C.: Phys. Rep. 513, 1 (2012) ADSMathSciNetCrossRefGoogle Scholar
  11. Demorest, P., Pennucci, T., Ransom, S., Roberts, M., Hessels, J.: Nature 467, 1081–1083 (2010) ADSCrossRefGoogle Scholar
  12. Douchin, F., Haensel, P.: Phys. Lett. B 485, 107 (2000) ADSCrossRefGoogle Scholar
  13. Douchin, F., Haensel, P.: Astron. Astrophys. 380, 151 (2001) ADSCrossRefGoogle Scholar
  14. Esposito-Farese, G., Polarski, D.: Phys. Rev. D 63, 063504 (2001) ADSCrossRefGoogle Scholar
  15. Fiziev, P.: Mod. Phys. Lett. A 15(32), 1977–1990 (2000) ADSCrossRefGoogle Scholar
  16. Fiziev, P.: Preprint UTTG-02-02 gr-qc/0202074v4 (2002)
  17. Fiziev, P.: Phys. Rev. D 87, 044053 (2013) ADSGoogle Scholar
  18. Fiziev, P.: Eprint, arXiv:1402.2813 [gr-qc] (2014a)
  19. Fiziev, P.: Eprint, arXiv:1411.0242 [gr-qc] (2014b)
  20. Fiziev, P.: Eprint, arXiv:1506.08585 [gr-qc] (2015a)
  21. Fiziev, P.: Eprint, arXiv:1512.03931 [gr-qc] (2015b)
  22. Fiziev, P., Georgieva, D.: Phys. Rev. D 67, 064016 (2003) ADSGoogle Scholar
  23. Fiziev, P., Marinov, K.: Bulg. Astron. J. 23, 3 (2015) Google Scholar
  24. Fujii, Y.: Nat. Phys. Sci. 234, 5 (1971) ADSCrossRefGoogle Scholar
  25. Goriely, S., Chamel, N., Pearson, J.: Phys. Rev. C 82, 035804 (2010) ADSCrossRefGoogle Scholar
  26. Haensel, P., Potekhin, A.Y.: Astron. Astrophys. 428, 191 (2004) ADSCrossRefGoogle Scholar
  27. Hu, W., Sawicki, I.: Phys. Rev. D 76, 064004 (2007) ADSGoogle Scholar
  28. Landau, L., Lifshitz, E.: The Classical Theory of Fields. Pergamon Press, New York (1975) MATHGoogle Scholar
  29. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007) CrossRefGoogle Scholar
  30. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59–144 (2011) ADSMathSciNetCrossRefGoogle Scholar
  31. O’Hanlon, J.: Phys. Rev. Lett. 82, 451 (1972) Google Scholar
  32. Pearson, J.M., Goriely, S., Chamel, N.: Phys. Rev. C 83, 065810 (2011) ADSCrossRefGoogle Scholar
  33. Pearson, J.M., Chamel, N., Goriely, S., Ducoin, C.: Phys. Rev. C 85, 065803 (2012) ADSCrossRefGoogle Scholar
  34. Plank Collaboration: Plank 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. (2015). doi: 10.1051/0004-6361/201525814 Google Scholar
  35. Potekhin, A.Y., Fantina, A.F., Chamel, N., Pearson, J.M., Goriely, S.: Astron. Astrophys., vol. 560, p. A48 (2013) Google Scholar
  36. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 15, 2105–2132 (2006) ADSCrossRefGoogle Scholar
  37. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980) ADSCrossRefGoogle Scholar
  38. Starobinsky, A.A.: JEPT Lett. 86, 157 (2007) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.JINRDubnaRussia
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Sofia University Foundation for Theoretical and Computational Physics and AstrophysicsSofiaBulgaria

Personalised recommendations