Advertisement

Revealing the basins of convergence in the planar equilateral restricted four-body problem

  • Euaggelos E. Zotos
Original Article

Abstract

The planar equilateral restricted four-body problem where two of the primaries have equal masses is used in order to determine the Newton-Raphson basins of convergence associated with the equilibrium points. The parametric variation of the position of the libration points is monitored when the value of the mass parameter \(m_{3}\) varies in predefined intervals. The regions on the configuration \((x,y)\) plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson iterative scheme. The correlations between the attracting domains of the equilibrium points and the corresponding number of iterations needed for obtaining the desired accuracy are also illustrated. We perform a thorough and systematic numerical investigation by demonstrating how the dynamical parameter \(m_{3}\) influences the shape, the geometry and the degree of fractality of the converging regions. Our numerical outcomes strongly indicate that the mass parameter is indeed one of the most influential factors in this dynamical system.

Keywords

Restricted four body-problem Equilibrium points Basins of attraction Fractal basins boundaries 

Notes

Acknowledgements

I would like to express my warmest thanks to the anonymous referee for the careful reading of the manuscript and for all the apt suggestions and comments which allowed us to improve both the quality and the clarity of the paper.

References

  1. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-Heiles system. Phys. Rev. E 64, 066208 (2001) ADSCrossRefGoogle Scholar
  2. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333–386 (2009) ADSCrossRefGoogle Scholar
  3. Álvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121, 191–210 (2015) MathSciNetCrossRefGoogle Scholar
  4. Álvarez-Ramírez, M., Skea, J.E.F., Stuchi, T.J.: Nonlinear stability analysis in a equilateral restricted four-body problem. Astrophys. Space Sci. 358, 3 (2015) ADSCrossRefGoogle Scholar
  5. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011a) MathSciNetCrossRefzbMATHGoogle Scholar
  6. Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011b) ADSCrossRefzbMATHGoogle Scholar
  7. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013) ADSCrossRefGoogle Scholar
  8. Burgos-García, J., Delgado, J.: Periodic orbits in the restricted four-body problem with two equal masses. Astrophys. Space Sci. 345, 247–263 (2013) ADSCrossRefzbMATHGoogle Scholar
  9. Ceccaroni, M., Biggs, J.: Extension of low-thrust propulsion to the autonomous coplanar circular restricted four body problem with application to future Trojan Asteroid missions. In: 61st International Astronautical Congress, IAC 2010, Prague, Czech Republic (2010) Google Scholar
  10. Croustalloudi, M., Kalvouridis, T.: Attracting domains in ring-type N-body formations. Planet. Space Sci. 55, 53–69 (2007) ADSCrossRefGoogle Scholar
  11. Croustalloudi, M.N., Kalvouridis, T.J.: The restricted \(2+2\) body problem: parametric variation of the equilibrium states of the minor bodies and their attracting regions. Astron. Astrophys. (2013), article ID 281849 Google Scholar
  12. de Almeida Prado, A.F.B.: Numerical and analytical study of the gravitational capture in the bicircular problem. Adv. Space Res. 36, 578–584 (2005) ADSCrossRefGoogle Scholar
  13. Douskos, C.N.: Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction. Astrophys. Space Sci. 326, 263–271 (2010) ADSCrossRefzbMATHGoogle Scholar
  14. Gousidou-Koutita, M., Kalvouridis, T.J.: On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of \((N + 1)\) bodies. Appl. Math. Comput. 212, 100–112 (2009) MathSciNetzbMATHGoogle Scholar
  15. Hadjidemetriou, J.D.: The restricted planetary 4-body problem. Celest. Mech. 21, 63–71 (1980) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Jorba, A.: On practical stability regions for the motion of a small particle close to the equilateral points of the real Earth-Moon system. In: Proceedings of the 3rd International Symposium (HAMSYS-98) Heldat Pátzcuaro. World Scientific Monograph Series in Mathematics, vol. 6, pp. 197–213. World Scientific, River Edge (2000) Google Scholar
  17. Kalvouridis, T.J.: On some new aspects of the photo-gravitational Copenhagen problem. Astrophys. Space Sci. 317, 107–117 (2008) ADSCrossRefzbMATHGoogle Scholar
  18. Kalvouridis, T.J., Gousidou-Koutita, M.Ch.: Basins of attraction in the Copenhagen problem where the primaries are magnetic dipoles. Appl. Math. 3, 541–548 (2012) CrossRefGoogle Scholar
  19. Kloppenborg, B., Stencel, R., Monnier, J.D., Schaefer, G., Zhao, M., Baron, F., McAlister, H., et al.: Infrared images of the transiting disk in the epsilon Aurigae system. Nature 464, 870–872 (2010) ADSCrossRefGoogle Scholar
  20. Kumari, R., Kushvah, B.S.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349, 693–704 (2014) ADSCrossRefGoogle Scholar
  21. Leandro, E.S.G.: On the central configurations of the planar restricted four-body problem. J. Differ. Equ. 226, 323–351 (2006) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. Machuy, A.L., de Almeida Prado, A.F.B., Stuchi, T.J.: Numerical study of the time required for the gravitational capture in the bi-circular four-body problem. Adv. Space Res. 40, 118–124 (2007) ADSCrossRefGoogle Scholar
  23. Marchal, C.: The Three-Body Problem. Elsevier, New York (1990) zbMATHGoogle Scholar
  24. Melita, M.D., Licandro, J., Jones, D.C., Williams, I.P.: Physical properties and orbital stability of the Trojan asteroids. Icarus 195, 686–697 (2008) ADSCrossRefGoogle Scholar
  25. Michalodimitrakis, M.: The circular restricted four-body problem. Astrophys. Space Sci. 75, 289–305 (1981) ADSCrossRefGoogle Scholar
  26. Moulton, F.R.: On a class of particular solutions of the problem of four bodies. Trans. Am. Math. Soc. 1, 17–29 (1900) MathSciNetCrossRefzbMATHGoogle Scholar
  27. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993) zbMATHGoogle Scholar
  28. Papadakis, K.E.: Asymptotic orbits in the restricted four-body problem. Planet. Space Sci. 55, 1368–1379 (2007) ADSCrossRefGoogle Scholar
  29. Papadouris, J.P., Papadakis, K.E.: Equilibrium points in the restricted four-body problem. Astrophys. Space Sci. 344, 21–38 (2013) ADSCrossRefzbMATHGoogle Scholar
  30. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids-I. Long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006) ADSCrossRefGoogle Scholar
  31. Schwarz, R., Süli, À., Dvorac, R., Pilat-Lohinger, E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009a) ADSCrossRefzbMATHGoogle Scholar
  32. Schwarz, R., Süli, À., Dvorac, R.: Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 (2009b) ADSCrossRefGoogle Scholar
  33. Simó, C.: Relative equilibrium solutions in the four-body problem. Celest. Mech. 18, 165–184 (1978) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Simó, C., Gómez, G., Jorba, A., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: From Newton to Chaos, Cortina d’Ampezzo, 1993. NATO Advanced Science Institutes Series B: Physics, vol. 336, pp. 343–370. Plenum, New York (1995) CrossRefGoogle Scholar
  35. Singh, J., Vincent, A.E.: Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015) ADSCrossRefGoogle Scholar
  36. Singh, J., Vincent, A.E.: Equilibrium points in the restricted four-body problem with radiation pressure. Few-Body Syst. 57, 83–91 (2016) ADSCrossRefGoogle Scholar
  37. Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. Szebehely, V.: Theory of Orbits. Academic Press, New York (1967) Google Scholar
  39. Van Hamme, W., Wilson, R.E.: The restricted four-body problem and epsilon Aurigae. Astrophys. J. 306, L33–L36 (1986) ADSCrossRefGoogle Scholar
  40. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003) zbMATHGoogle Scholar
  41. Zotos, E.E.: Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure. Astrophys. Space Sci. 361 (2016a), article ID 181, 17 pp. Google Scholar
  42. Zotos, E.E.: Fractal basin boundaries and escape dynamics in a multiwell potential. Nonlinear Dyn. 85, 1613–1633 (2016b) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations