Advertisement

Astrophysics and Space Science

, 361:291 | Cite as

The triple system AT Mic AB + AU Mic in the \(\beta \) Pictoris association

  • Sergio MessinaEmail author
  • Giuseppe Leto
  • Isabella Pagano
Original Article

Abstract

Equal-mass stars in young open clusters and loose associations exhibit a wide spread of rotation periods, which likely originates from differences in the initial rotation periods and in the primordial disc lifetimes. We want to explore if the gravitational effects by nearby companions may play an additional role in producing the observed rotation period spread, as well as, the role that magnetic activity may also play. We measure the photometric rotation periods of components of multiple stellar systems and look for correlations of the period differences among the components to their reciprocal distances. In this paper, we analyzed the triple system AU Mic + AT Mic A&B in the \(25\pm 3\)-Myr \(\beta \) Pictoris association. We have retrieved from the literature the rotation period of AU Mic (\({P} = 4.85~\mbox{d}\)) and measured from photometric archival data the rotation periods of both components of AT Mic (\({P} = 1.19~\mbox{d}\) and \({P} = 0.78~\mbox{d}\)) for the first time. Moreover, we detected a high rate of flare events from AT Mic. Whereas the distant component AU Mic has evolved rotationally as a single star, the A and B components of AT Mic, separated by \(\sim 27~\mbox{AU}\), exhibit a rotation rate a factor 5 larger than AU Mic. Moreover, the A and B components, despite have about equal mass, show a significant difference (\(\sim 40~\%\)) between their rotation periods. A possible explanation is that the gravitational forces between the A and B components of AT Mic (that are a factor \(\sim 7.3\times 10^{6}\) more intense than those between AU Mic and AT Mic) have enhanced the dispersal of the AT Mic primordial disc, shortening its lifetime and the disc-locking phase duration, making the component A and B of AT Mic to rotate faster than the more distant AU Mic. We suspect that a different level of magnetic activity between the A and B components of AT Mic may be the additional parameter responsible for the difference between their rotation periods.

Keywords

Stars: activity Stars: late-type Stars: rotation Stars: starspots Stars: abundances Stars: individual: AU Mic, AT Mic, \(\beta \) Pictoris association 

Notes

Acknowledgements

Research on stellar activity at INAF—Catania Astrophysical Observatory is supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca). This paper makes use of data from the first public release of the WASP data (Butters et al. 2010) as provided by the WASP consortium and services at the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research has made use of the Simbad database, operated at CDS (Strasbourg, France). We thank the anonymous Referee for useful comments that allowed us to improve the paper quality.

References

  1. Alonso-Floriano, F.J., Caballero, J.A., Cortés-Contreras, M., Solano, E., Montes, D.: Astron. Astrophys. 583, A85 (2015) ADSCrossRefGoogle Scholar
  2. Bailey, J.I. III, White, R.J., Blake, et al.: Astrophys. J. 749, 16 (2012) ADSCrossRefGoogle Scholar
  3. Barrado y Navascues, D., Stauffer, J.R., Song, I., Caillault, J.-P.: Astrophys. J. 520, 123 (1999) ADSCrossRefGoogle Scholar
  4. Browning, M.K., Basri, G., Marcy, G.W., West, A.A., Zhang, J.: Astron. J. 139, 504 (2010) ADSCrossRefGoogle Scholar
  5. Butters, O.W., West, R.G., Anderson, D.R., et al.: Astron. Astrophys. 520, L10 (2010) ADSCrossRefGoogle Scholar
  6. Caballero, J.A.: Astron. Astrophys. 507, 251 (2009) ADSCrossRefGoogle Scholar
  7. Caballero, J.A.: Astron. Astrophys. 514, A98 (2010) ADSCrossRefGoogle Scholar
  8. Camenzind, O.: Rev. Mod. Astron. 3, 234 (1990) ADSCrossRefGoogle Scholar
  9. Collier Cameron, A., Davidson, V.A., Hebb, L., et al.: Mon. Not. R. Astron. Soc. 400, 451 (2009) ADSCrossRefGoogle Scholar
  10. Delorme, P., Collier Cameron, A., Hebb, L., et al.: Mon. Not. R. Astron. Soc. 413, 2218 (2011) ADSCrossRefGoogle Scholar
  11. Douglas, S.T., Agueros, M.A., Covey, K.R., et al.: Astrophys. J. 795, 161 (2014) ADSCrossRefGoogle Scholar
  12. Gershberg, R.E., Katsova, M.M., Lovkaya, M.N., Terebizh, A.V., Shakhovskaya, N.I.: Astron. Astrophys. Suppl. Ser. 139, 555 (1999) ADSCrossRefGoogle Scholar
  13. Hebb, L., Petro, L., Ford, H.C., et al.: Mon. Not. R. Astron. Soc. 379, 63 (2007) ADSCrossRefGoogle Scholar
  14. Herbst, W., Bailer-Jones, C.A.L., Mundt, R., Meisenheimer, K., Wackermann, R.: Astron. Astrophys. 396, 513 (2002) ADSCrossRefGoogle Scholar
  15. Ingleby, L., Calvet, N., Hernndez, J., et al.: Astrophys. J. 790, 47 (2014) ADSCrossRefGoogle Scholar
  16. Jayawardhana, R., Coffey, J., Scholz, A., Brandeker, A., Van Kerkwijk, M.H.: Astron. J. 648, 1206 (2006) ADSCrossRefGoogle Scholar
  17. Kalas, P., Liu, M.C., Matthews, B.C.: Science 303, 1990 (2004) ADSCrossRefGoogle Scholar
  18. Kennedy, G.M., Wyatt, M.C., Kalas, P.: Mon. Not. R. Astron. Soc. 438, 96 (2014) ADSCrossRefGoogle Scholar
  19. Kiraga, M.: Acta Astron. 62, 67 (2012) ADSGoogle Scholar
  20. Kiraga, M., Stepien, K.: Acta Astron. 57, 149 (2007) ADSGoogle Scholar
  21. Koen, C., Kilkenny, D., van Wyk, F., Marang, F.: Mon. Not. R. Astron. Soc. 403, 1949 (2010) ADSCrossRefGoogle Scholar
  22. Lamm, M.H., Bailer-Jones, C.A.L., Mundt, R., Herbst, W., Scholz, A.: Astron. Astrophys. 417, 557 (2004) ADSCrossRefGoogle Scholar
  23. Lepine, S., Simon, M.: Astron. J. 137, 3632 (2009) ADSCrossRefGoogle Scholar
  24. Leto, G., Pagano, I., Buemi, C.S., Rodonó, M.: Astron. Astrophys. 327, 1114 (1997) ADSGoogle Scholar
  25. Malkov, O.Y., Tamazian, V.S., Docobo, J.A., Chulkov, D.A.: Astron. Astrophys. 546, A69 (2012) ADSCrossRefGoogle Scholar
  26. Malo, L., Doyon, R., Lafreniere, et al.: Astrophys. J. 762, 88 (2013) ADSCrossRefGoogle Scholar
  27. Malo, L., Artigau, E., Doyon, R., et al.: Astrophys. J. 788, 81 (2014) ADSCrossRefGoogle Scholar
  28. Mamajek, E.E., Hillenbrand, L.A.: Astrophys. J. 687, 1264 (2008) ADSCrossRefGoogle Scholar
  29. Matthews, B.C., Kennedy, G., Sibthorpe, B., et al.: Astrophys. J. 811, 100 (2015) ADSCrossRefGoogle Scholar
  30. McCarthy, K., White, R.J.: Astron. J. 143, 134 (2012) ADSCrossRefGoogle Scholar
  31. Messina, S.: Mem. Soc. Astron. Ital. 78, 628 (2007) ADSGoogle Scholar
  32. Messina, S., Desidera, S., Lanzafame, A.C., Turatto, M., Guinan, E.F.: Astron. Astrophys. 532, A10 (2011) ADSCrossRefGoogle Scholar
  33. Messina, S., Monard, B., Biazzo, K., Melo, C.H.F., Frasca, A.: Astron. Astrophys. 570, A19 (2014) ADSCrossRefGoogle Scholar
  34. Messina, S., Monard, B., Worters, H.L., Bromage, G.E., Sanchez, R.Z.: New Astron. 42, 29 (2016a) ADSCrossRefGoogle Scholar
  35. Messina, S., Lanzafame, A.C., Feiden, G., et al.: Astron. Astrophys. (2016b). arXiv:1607.06634v2
  36. Messina, S., et al.: (2016c, in preparation) Google Scholar
  37. Pecaut, M.J., Mamajek, E.E.: Astrophys. J. Suppl. Ser. 208, 9 (2013) ADSCrossRefGoogle Scholar
  38. Plavchan, P., Werner, M.W., Chen, C.H., et al.: Astrophys. J. 698, 1068 (2009) ADSCrossRefGoogle Scholar
  39. Pojmański, G.: Acta Astron. 47, 467 (1997) ADSGoogle Scholar
  40. Pojmański, G.: Acta Astron. 52, 397 (2002) ADSGoogle Scholar
  41. Pye, J.P., Rosen, S., Fyfe, D., Schroeder, A.C.: Astron. Astrophys. 581, A28 (2015) ADSCrossRefGoogle Scholar
  42. Reiners, A., Joshi, N., Goldman, B.: Astron. J. 143, 93 (2012) ADSCrossRefGoogle Scholar
  43. Ribas, A., Merin, B., Bouy, H., Maud, L.T.: Astron. Astrophys. 561, A54 (2014) ADSCrossRefGoogle Scholar
  44. Riedel, A.R., Finch, C.T., Henry, T.J., et al.: Astron. J. 147, 85 (2014) ADSCrossRefGoogle Scholar
  45. Riviere-Marichalar, P., Barrado, D., Montesinos, B., et al.: Astron. Astrophys. 565, A68 (2014) ADSCrossRefGoogle Scholar
  46. Roberts, D.H., Lehar, J., Dreher, J.W.: Astron. J. 93, 978 (1987) CrossRefGoogle Scholar
  47. Scargle, J.D.: Astrophys. J. 263, 835 (1982) ADSCrossRefGoogle Scholar
  48. Scholz, A., Coffey, J., Brandeker, A., Jayawardhana, R.: Astrophys. J. 662, 1254 (2007) ADSCrossRefGoogle Scholar
  49. Shaya, E.J., Olling, R.P.: Astrophys. J. Suppl. Ser. 192, 2 (2011) ADSCrossRefGoogle Scholar
  50. Tamuz, O., Mazeh, T., Zucker, S.: Mon. Not. R. Astron. Soc. 356, 1466 (2005) ADSCrossRefGoogle Scholar
  51. Torres, C.A.O., Ferraz-Mello, S.: Astron. Astrophys. 27, 231 (1973) ADSGoogle Scholar
  52. Torres, C.A.O., Quast, G.R., da Silva, L., et al.: Astron. Astrophys. 460, 695 (2006) ADSCrossRefGoogle Scholar
  53. Vogt, S.S., Soderblom, D.R., Penrod, G.D.: Astrophys. J. 269, 250 (1983) ADSCrossRefGoogle Scholar
  54. Weise, P., Launhardt, R., Setiawan, J., Henning, T.: Astron. Astrophys. 517, A88 (2010) ADSCrossRefGoogle Scholar
  55. Wilson, R.H. Jr.: Astron. J. 59, 132 (1954) ADSCrossRefGoogle Scholar
  56. Zuckerman, B., Song, I.: Annu. Rev. Astron. Astrophys. 42, 685 (2004) ADSCrossRefGoogle Scholar
  57. Zuckerman, B., Song, I., Bessell, M.S., Webb, R.A.: Astrophys. J. 562, 87 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.INAF—Catania Astrophysical ObservatoryCataniaItaly

Personalised recommendations