Skip to main content
Log in

Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper investigates the dependence of the occurrence frequency of ionospheric upflowing oxygen (O+) ions on the sunspot cycle and geomagnetic activity. We examine the upflows response to the geomagnetic disturbances as well as the influence of the ion energy factor in controlling the magnitude of the occurrence frequency and the net energy flux. We discuss the spatial distribution of the upflow occurrence frequency and construct a regression model as a function of the magnetic latitude. The results show an overall enhancement of the upflow occurrence frequency during magnetically disturbed periods and indicate that the high-occurrence area spreads out from the source regions during magnetically quiet periods. The high-occurrence areas are located at 70° magnetic latitude (mLat) in the dayside auroral oval zone and between 76–80° mLat in the dayside polar cusp region. In the nightside auroral oval zone, these areas are near 60° mLat, penetrating further equatorward to 55° mLat during magnetically disturbed periods. High energy (≥1 keV) upflowing ions are common in the nightside auroral oval zone while low energy (<1 keV) upflowing ions are found escaping from the high latitude dayside cusp region. A Gaussian function is shown to be a good fit to the occurrence frequency over the magnetic latitude. For high energy upflowing O+ ions, the occurrence frequency exhibits a single peak located at about 60° mLat in the nightside auroral oval zone while for low energy upflowing O+ ions, it exhibits two peaks, one near 60° mLat in the auroral oval zone and the other near 78° mLat in the cusp region. We study the solar activity dependence by analyzing the relationship between the upflow occurrence frequency and the sunspot number (\(R_{Z}\)). The statistical result shows that the frequency decreases with declining solar activity level, from ∼30 % at solar maximum to ∼5 % at solar minimum. In addition, the correlation coefficient between the occurrence frequency and \(R_{Z}\) is 0.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bouhram, M., Duboulz, N., Malingre, M., Jasperse, J.R., Pottlette, R., Senior, C., Delcourt, D., Carlson, C.W., Roth, I., Berthomier, M., Sauvaud, J.A.: Ion outflow and associated perpendicular heating in the cusp observed by Interball Auroral Probe and FAST Auroral Snapshot. J. Geophys. Res. 107, A2 (2002). doi:10.1029/2001JA000091

    Article  Google Scholar 

  • Brambles, O.J., Lotko, W., Zhang, B., Ouellette, J., Lyon, J., Wiltberger, M.: The effects of ionospheric outflow on ICME and SIR driven sawtooth event. J. Geophys. Res. Space Phys. 118, 6026–6041 (2013). doi:10.1002/jgra.50522

    Article  ADS  Google Scholar 

  • Burchill, J.K., Knudsen, D.J., Clemmons, J.H., Oksavik, K., Pfaff, R.F., Steigies, C.T., Yau, A.W., Yeoman, T.K.: Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux. J. Geophys. Res. 115, A05206 (2010). doi:10.1029/2009JA015006

    Article  ADS  Google Scholar 

  • Carlson, C.W., Pfaff, R.F., Watzin, J.G.: The fast auroral snapshot (FAST) mission. Geophys. Res. Lett. 25, 2013–2016 (1998). doi:10.1029/98GL01592

    Article  ADS  Google Scholar 

  • Cattell, C.A., Nguyen, T., Temerin, M.: Effects of solar cycle on auroral particle acceleration. In: Auroral Plasma Dynamics, vol. 219 (1993). doi:10.1029/GM080p0219

    Google Scholar 

  • Chappell, C.R., Moore, T.E., Waite, J.H.: The ionosphere as fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92, 5896–5910 (1987). doi:10.1029/JA092iA06p05896

    Article  ADS  Google Scholar 

  • Collin, H.L., Peterson, W.K., Drake, J.F., Yau, A.W.: The helium components of energetic terrestrial ion upflows: their occurrence, morphology, and intensity. J. Geophys. Res. 93, 7558–7864 (1988). doi:10.1029/JA093iA07p07558

    Article  ADS  Google Scholar 

  • Collin, H.L., Peterson, W.K., Lennartsson, O.W., Drake, J.F.: The seasonal variation of auroral ion beams. J. Geophys. Res. 25, 4071–4074 (1998). doi:10.1029/1998GL900090

    Google Scholar 

  • Cully, C.M., Donovan, E.F., Yau, A.W., Arkos, G.G.: Akebono/Suprathermal Mass Spectrometer observations of low energy ion outflow: Dependence on magnetic activity and solar wind conditions. J. Geophys. Res. 108(A2), 1093 (2003). doi:10.1029/2001JA009200

    Google Scholar 

  • Daglis, I.A., Axford, W.I.: Fast ionospheric response to enhanced activity in geospace: ion feeding of inner magnetotail. Geophys. Res. Lett. 101, 5047–5056 (1996)

    Article  Google Scholar 

  • Frank, L.A., Craven, J.D., Burch, J.L., Winningham, J.D.: Polar views of the Earth’s aurora with Dynamics Explorer. Geophys. Res. Lett. 9, 1001–1004 (1982)

    Article  ADS  Google Scholar 

  • Frey, H.U., Immel, T.J., Lu, G., Bonnell, J., Fuselier, S.A., Mende, S.B., Hubert, B., Østgaard, N., Le, G.: Properties of localized, high latitude, dayside aurora. J. Geophys. Res. 108(A4), 8008 (2003). doi:10.1029/2002JA009332

    Article  Google Scholar 

  • Fu, S.Y., Pu, Z.Y., Zong, Q.G., Xiao, C.J., Xie, L., Wilken, B.: Ion composition variations in intense magnetic storms and their relation to storm evolution. Chin. J. Geophys. 44(1), 1–12 (2001). doi:10.1002/cjg2.110

    Article  Google Scholar 

  • Fuselier, S.A., Claflin, E.S., Moore, T.E.: Magnetic local time extent of ion outflow during substorm recovery. J. Geophys. Res. 113, A06204 (2008). doi:10.1029/2007JA012811

    Article  ADS  Google Scholar 

  • Ganguli, G., Keskinen, M.J., Romero, H., Heelis, R., Moore, T., Pollock, C.: Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J. Geophys. Res. 99, 8873–8889 (1994)

    Article  ADS  Google Scholar 

  • Geiss, J., Balsiger, H., Eberhardt, P., Walker, H.P., Weber, L., Young, D.T., Rosenbauer, H.: Dynamics of magnetospheric ion composition as observed by the GEOS mass spectrometer. Space Sci. Rev. 22, 537–566 (1978)

    Article  ADS  Google Scholar 

  • Haaland, S., Li, K., Eriksson, A., Andre, M., Engwall, E., Forster, M, et al.: Cold ion outflow as a source of plasma for the magnetosphere. In: Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere (2013). doi:10.1029/2012GM001317

    Google Scholar 

  • Hultqvist, B.: Extraction of ionospheric plasma by magnetospheric processes. J. Atmos. Terr. Phys. 53, 3–15 (1991)

    Article  ADS  Google Scholar 

  • Klumpar, D.M., Hertzberg, E., Peterson, W.K., Shelley, E.G.: The time-of-flight energy, energy, angle, mass spectrograph (TEAMS) experiment on FAST. Space Sci. Rev. 98, 197–219 (2001). doi:10.1023/A:1013127607414

    Article  ADS  Google Scholar 

  • Knudsen, D.J., Whalen, B.A., Abe, T., Yau, A.: Temporal evolution and spatial dispersion of ion conics: evidence for a polar cusp heating wall. In: Burch, J.L., Waite, J.H. (eds.) Solar System Plasmas in Space and Time. Geophys. Monogr. Ser., vol. 84, pp. 163–170. AGU, Washington (1994). doi:10.1029/GM084p0163

    Chapter  Google Scholar 

  • Korth, A., Friedel, R.H.W., Frutos-Aflaro, F., Mouikis, C.G., Zong, Q.: Ion composition of substorms during storm-time and non-storm-time periods. J. Atmos. Sol.-Terr. Phys. 64, 561 (2002). doi:10.1016/S1364-6826(02)00013-5

    Article  ADS  Google Scholar 

  • Lennartsson, O.W., Collin, H.L.: Solar wind control of Earth’s H+ and O+ outflow rates in the 15-eV to 33-keV energy range. J. Geophys. Res. 109, A12212 (2004). doi:10.1029/2004JA010690

    Article  ADS  Google Scholar 

  • Lund, E.J., Möbius, E., Lynch, K.A., Klumpar, D.M., Peterson, W.K., Ergun, R.E., Carlson, C.W.: On the mass dependence of transverse ion acceleration by broad-band extremely low frequency waves. Phys. Chen. Earth C 26(13), 161–163 (2001)

    Google Scholar 

  • Menietti, J.D., Burch, J.L.: DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers. J. Geophys. Res. 92, 7503–7518 (1987)

    Article  ADS  Google Scholar 

  • Moore, T.E., Foka, M.C., Delcourt, D.C., Slinkerc, S.P., Fedderd, J.A.: Global aspects of solar wind–ionosphere interactions. J. Atmos. Sol.-Terr. Phys. 69, 265–278 (2007). doi:10.1016/j.jastp.2006.08.009

    Article  ADS  Google Scholar 

  • Moore, T.E., Fok, M.C., Garcia-Sage, K.: The ionospheric outflow feedback loop. J. Atmos. Sol.-Terr. Phys. 115–116, 59–66 (2014). doi:10.1016/j.jastp.2014.02.002

    Article  Google Scholar 

  • Newell, P.T., Meng, C.I., Sibeck, D.G., Lepping, R.: Some low-altitude cusp dependences on the interplanetary magnetic field. J. Geophys. Res. 94, 8921 (1989)

    Article  ADS  Google Scholar 

  • Nilsson, H., Barghouthi, I.A., Slapak, R., Eriksson, A.I., Andre, M.: Hot and cold ion outflow: spatial distribution of ion heating. J. Geophys. Res. 117, A11201 (2012). doi:10.1029/2012JA017974

    Article  ADS  Google Scholar 

  • Nilsson, H., Barghouthi, I.A., Slapak, R., Eriksson, A.I., Andre, M.: Hot and cold ion outflow: observations and implications for numerical models. J. Geophys. Res. 118, 105–117 (2013). doi:10.1029/2012JA017975

    Article  Google Scholar 

  • Norqvist, P., André, M., Tyrland, M.: A statistical study of ion energization mechanisms in the auroral region. J. Geophys. Res. 103(A10), 23459 (1998). doi:10.1029/98JA02076

    Article  ADS  Google Scholar 

  • Peterson, W.K., Andersson, L., Callahan, B.C., Collin, H.L., Scudder, J.D., Yau, A.W.: Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates. J. Geophys. Res. 113, A07222 (2008). doi:10.1029/2008JA013059

    Article  ADS  Google Scholar 

  • Peterson, W.K., Anderson, L., Callahan, B., Elkington, S.R., Winglee, R.W., Scudder, J.D., Collin, H.L.: Geomagnetic activity dependence of O+ in transit from the ionosphere. J. Atmos. Sol.-Terr. Phys. 71, 1623–1629 (2009). doi:10.1016/j.jastp.2008.11.003

    Article  ADS  Google Scholar 

  • Pfaff, R., Carlson, C., Watzin, J., Everett, D., Gruner, T.: An overview of the fast auroral snapshot (FAST) satellite. Space Sci. Rev. 98, 1–32 (2001). doi:10.1007/97894010033221

    Article  ADS  Google Scholar 

  • Pollock, C.J., Chandler, M.O., Moore, T.E., Waite, J.H. Jr, Chappell, C.R., Durnett, D.A.: A survey of upwelling ion event characteristics. J. Geophys. Res. 95(A11), 18969 (1990)

    Article  ADS  Google Scholar 

  • Redmon, R.J., Peterson, W.K., Andersson, L., Denig, W.F.: A global comparison of O+ upward flows at 850 km and outflow rates at 6000 km during nonstorm times. J. Geophys. Res. 117, A04213 (2012). doi:10.1029/2011JA017390

    ADS  Google Scholar 

  • Russell, C.T.: The polar cusp. Adv. Space Res. 25(7/8), 1413–1424 (2000)

    Article  ADS  Google Scholar 

  • Semeter, J., Heinselman, C.J., Thayer, J.P., Doe, R.A., Frey, H.U.: Ion upflow enhanced by drifting F-region plasma structure along the nightside polar cap boundary. Geophys. Res. Lett. 30(22), 2139–2144 (2003). doi:10.1029/2003GL017747

    Article  ADS  Google Scholar 

  • Shelley, E.G., Johnson, R.G., Sharp, R.D.: Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104–6110 (1972). doi:10.1029/JA077i031p06104

    Article  ADS  Google Scholar 

  • Shepherd, S.G.: Altitude-adjusted corrected geomagnetic coordinates: definition and functional approximations. J. Geophys. Res. 119, 7501–7521 (2014). doi:10.1002/2014JA020264

    Article  Google Scholar 

  • Shi, J.K., Li, C.Q., Liu, Z.X.: Transport of ionosphere upflowing O+ ion along the field line at various longitude to the magnetosphere. Chin. J. Geophys. 45, 306–312 (2002)

    Article  Google Scholar 

  • Skjæveland, Å., Moen, J., Carlson, H.C.: Which cusp upflow events can possibly turn into outflows? J. Geophys. Res. Space Phys. 119, 6876–6890 (2014). doi:10.1002/2013JA019495

    Article  ADS  Google Scholar 

  • Strangeway, R.J., Ergun, R.E., Su, Y.J., Carlson, C.W., Elphic, R.C.: Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110, A3 (2005). doi:10.1029/2004JA010829

    Article  Google Scholar 

  • Su, Y.J., Ergun, R.E., Peterson, W.K., Onsager, T.G., Pfaff, R., Carlson, C.W., Strangeway, R.J.: Fast Auroral snapshot observations of cusp electron and ion structures. J. Geophys. Res. 106(A11), 25595 (2001). doi:10.1029/2001JA000093

    Article  ADS  Google Scholar 

  • Tung, Y.-K., Carlson, C.W., McFadden, J.P., Klumpar, D.M., Parks, G.K., Peria, W.J., Liou, K.: Auroral polar cap boundary ion conic outflow observed on FAST. J. Geophys. Res. 106, 3603–3614 (2001). doi:10.1029/2000JA900115

    Article  ADS  Google Scholar 

  • Wahlund, J.E., Opgenoorth, H.J., Häggsträm, I., Winser, K.J., Jones, G.O.L.: EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J. Geophys. Res. 97, 3019–3037 (1992)

    Article  ADS  Google Scholar 

  • Wilson, G.R., Ober, D.M., Germany, G.A., Lund, E.J.: Nightside auroral zone and polar cap ion outflow as a function of substorm and phase. J. Geophys. Res. 109, A02206 (2004). doi:10.1029/2003JA009835

    Article  ADS  Google Scholar 

  • Winglee, R.M.: Multi-fluid simulations of the magnetosphere: the identification of the geopause and its variation with IMF. Geophys. Res. Lett. 25, 4441–4444 (1998)

    Article  ADS  Google Scholar 

  • Winglee, R.M., Peterson, W.K., Yau, A.W., Harnett, E., Stickle, A.: Model/data comparisons of ionospheric outflow as a function of invariant latitude and magnetic local time. J. Geophys. Res. 113, A06220 (2008). doi:10.1029/2007JA012817

    ADS  Google Scholar 

  • Yau, A.W., Whalen, B.A.: Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J. Geophys. Res. 89, 5507–5522 (1984). doi:10.1029/JA089iA07p05507

    Article  ADS  Google Scholar 

  • Yau, A.W., Bechwith, P.H., Peterson, W.K., Shelley, E.G.: Long-term (solar cycle) and seasonal variations upflowing ionospheric ion event at DE-1 altitudes. J. Geophys. Res. 90(A7), 6395–6407 (1985). doi:10.1029/JA090iA07p06395

    Article  ADS  Google Scholar 

  • Yau, A.W., André, M.: Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1–25 (1997). doi:10.1023/A:1004947203046

    Article  ADS  Google Scholar 

  • Yau, A.W., Howarth, A., Peterson, W.K., Abe, T.: Transport of thermal-energy ionospheric oxygen (O+) ions between the ionosphere and the plasma sheet and ring current at quiet times preceding magnetic storms. J. Geophys. Res. 117, A07215 (2012). doi:10.1029/2012JA017803

    Article  ADS  Google Scholar 

  • Zeng, W., Horwitz, J.L., Craven, P.D., Rich, F.J., Moore, T.E.: The O+ density trough at 5000 km altitude in the polar cap. J. Geophys. Res. 109, A03220 (2004). doi:10.1029/2003JA010210

    Article  ADS  Google Scholar 

  • Zhang, Q.H., Zong, Q.G., Lockwood, M., Heelis, R.A., Hariston, M., et al.: Earth’s ion upflow associated with polar cap patches: global and in situ observations. Geophys. Res. Lett. 43, 1845–1853 (2016). doi:10.1002/2016GL067897

    Article  ADS  Google Scholar 

  • Zhao, K., Jiang, Y., Men, K.P., Huang, L.F., Fu, S.: Interhemispheric comparisons of ionospheric upflow H+ at various geomagnetic activity levels using FAST observations. Chin. J. Geophys. 57(11), 3715–3728 (2014) (in Chinese). doi:10.6038/cjg20141126

    Google Scholar 

Download references

Acknowledgements

We thank the Goddard Space Flight Center for the FAST data, the data is obtained from the CDAWeb interface at http://cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi. We are grateful to Prof. H. Korth for his great effort in preparing the Geopack DLM. This work is supported by the National Natural Science Foundation of China grants 41174165 and 61572015, the Startup Foundation for Introducing Talent of NUIST (2243141501052), and the innovation project of graduate education in Jiangsu province (CXLX13-501, 201410300081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Jiang, Y., Chen, K.W. et al. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations. Astrophys Space Sci 361, 295 (2016). https://doi.org/10.1007/s10509-016-2872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2872-3

Keywords

Navigation