Perfect fluid and \(F(T)\) gravity descriptions of inflationary universe and comparison with observational data

  • M. G. Ganiou
  • M. J. S. Houndjo
  • Ines G. Salako
  • M. E. Rodrigues
  • J. Tossa
Original Article

Abstract

We describe in this paper the observables of inflationary models, in particular the spectrum index of torsion scalar perturbations, the tensor-to-scalar ratio, and the running of the spectral index, in the framework of perfect fluid models and \(F(T)\) gravity theories through the reconstruction methods. Then, our results on the perfect fluid and \(F(T)\) gravity theories of inflation are compared with recent cosmological observations such as the Planck satellite and BICEP2 experiment. Our studies prove that the perfect fluid and \(F(T)\) gravity models can reproduce the inflationary Universe consistent above all with the Planck data. We have reconstructed several models and considered others which give the best fit values compatible with the spectral index of curvature perturbations, the tensor-to-scalar ratio, and the running of the spectral index within the allowed ranges suggested by the Planck and BICEP2 results. By taking the trace-anomaly into consideration, we have shown that the reconstructed models \(F(T)\) can not describe a finite de Sitter inflation without an additional constant \(n\) that we related to cosmological constant.

Keywords

Scalar field Inflation Slow-roll E-folds 

References

  1. Ade, P.A.R., et al. (BICEP2 Collaboration): Phys. Rev. Lett. 112, 241101 (2014a) ADSCrossRefGoogle Scholar
  2. Ade, P.A.R., et al. (Planck Collaboration): Astron. Astrophys. 571, A16 (2014b) CrossRefGoogle Scholar
  3. Ade, P.A.R., et al. (Planck Collaboration): Astron. Astrophys. 571, A23 (2014c) CrossRefGoogle Scholar
  4. Ade, P.A.R., et al. (Planck Collaboration): Astron. Astrophys. 576, A104 (2015) CrossRefGoogle Scholar
  5. Astashenok, A.V., et al.: Phys. Lett. B 713, 145 (2012) ADSCrossRefGoogle Scholar
  6. Bamba, K., et al.: Phys. Lett. B 731, 257 (2014a) ADSMathSciNetCrossRefGoogle Scholar
  7. Bamba, K., et al.: Phys. Lett. B 737, 374 (2014b) ADSCrossRefGoogle Scholar
  8. Bamba, K., et al.: Phys. Rev. D 90, 124061 (2014c) ADSCrossRefGoogle Scholar
  9. Bassett, B.A., et al.: Rev. Mod. Phys. 78, 5377 (2006) CrossRefGoogle Scholar
  10. Chakravarty, G.K., Mohanty, S.: Phys. Lett. B 746, 242–247 (2015) ADSCrossRefGoogle Scholar
  11. Colley, W.N., Gott, J.R.: Mon. Not. R. Astron. Soc. 447(2), 2034–2045 (2015) ADSCrossRefGoogle Scholar
  12. Ferrara, S., et al.: Physic 62, 573 (2014) Google Scholar
  13. Frampon, P.H., et al.: Phys. Rev. D 84, 063003 (2011) ADSCrossRefGoogle Scholar
  14. Gao, Q., Gong, Y.: Phys. Lett. B 734, 41 (2014) ADSCrossRefGoogle Scholar
  15. Geng, C.-Q., Wu, Y.-P.: J. Cosmol. Astropart. Phys. 1304, 033 (2013) ADSMathSciNetCrossRefGoogle Scholar
  16. Hazra, D.K., et al.: J. Cosmol. Astropart. Phys. 08, 048 (2014) ADSCrossRefGoogle Scholar
  17. Hinshaw, G., et al. (WMAP Collaboration): Astron. Astrophys. Suppl. Ser. 208, 19 (2013) CrossRefGoogle Scholar
  18. Jamil, M., et al.: Int. J. Theor. Phys. 54(4), 1098–1112 (2015) MathSciNetCrossRefGoogle Scholar
  19. Joergensen, J., et al.: Phys. Rev. D 90, 043509 (2014) ADSCrossRefGoogle Scholar
  20. Kaiser, D.I.: Phys. Lett. B 340, 23 (1994) ADSCrossRefGoogle Scholar
  21. Kaiser, D.I.: Phys. Rev. D 52, 4295 (1995) ADSCrossRefGoogle Scholar
  22. Kamionskowski, M., Kovetz, E.D.: Phys. Rev. Lett. 113(19), 191303 (2014) ADSCrossRefGoogle Scholar
  23. Kobayashi, T., Seto, O.: Phys. Rev. D 89, 103524 (2014) ADSCrossRefGoogle Scholar
  24. Liddle, A.R., et al.: Phys. Rev. D 50, 7222 (1994) ADSCrossRefGoogle Scholar
  25. Lidsey, J.E., et al.: Rev. Mod. Phys. 69, 373 (1997) ADSCrossRefGoogle Scholar
  26. Mukhanov, V.: Eur. Phys. J. C 73, 2486 (2013) ADSCrossRefGoogle Scholar
  27. Nashed, G.G.L., et al.: arXiv:1411.3293 (2014)
  28. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006) ADSMathSciNetCrossRefGoogle Scholar
  29. Nottale, L.: Found. Sci. 15, 101.152 (2008) MathSciNetGoogle Scholar
  30. Odintsov, S.D., Oikonomou, V.K.: Phys. Rev. D 92, 124024 (2015) ADSMathSciNetCrossRefGoogle Scholar
  31. Pallis, C.: J. Cosmol. Astropart. Phys. 1410(10), 058 (2014) ADSMathSciNetCrossRefGoogle Scholar
  32. Salako, I.G., et al.: J. Cosmol. Astropart. Phys. 1311, 060 (2013) ADSCrossRefGoogle Scholar
  33. Skugoreva, M.A., et al.: Phys. Rev. D 91, 044023 (2015) ADSMathSciNetCrossRefGoogle Scholar
  34. Spergel, D.N., et al. (WMAP Collaboration): Astrophys. J. Suppl. Ser. 148, 175 (2003) ADSCrossRefGoogle Scholar
  35. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980) ADSCrossRefGoogle Scholar
  36. Vasquez, J.A., et al.: J. Cosmol. Astropart. Phys. 1308, 001 (2013) ADSCrossRefGoogle Scholar
  37. Vilenkin, A.: Phys. Rev. D 32, 2511 (1985) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. G. Ganiou
    • 1
  • M. J. S. Houndjo
    • 1
    • 2
  • Ines G. Salako
    • 1
    • 3
  • M. E. Rodrigues
    • 4
  • J. Tossa
    • 1
  1. 1.Institut de Mathématiques et de Sciences Physiques (IMSP)Porto-NovoBenin
  2. 2.Faculté des Sciences et Techniques de NatitingouUniversité de ParakouParakouBenin
  3. 3.Département de PhysiqueUniversité d’Agriculture de KétouKétouBenin
  4. 4.Faculdade de Ciências Exatas e TecnologiaUniversidade Federal do ParáAbaetetubaBrazil

Personalised recommendations