Multiple bifurcations in the periodic orbit around Eros

Original Article

Abstract

We investigate the multiple bifurcations in periodic orbit families in the potential field of a highly irregular-shaped celestial body. Topological cases of periodic orbits and four kinds of basic bifurcations in periodic orbit families are studied. Multiple bifurcations in periodic orbit families consist of four kinds of basic bifurcations. We found both binary period-doubling bifurcations and binary tangent bifurcations in periodic orbit families around asteroid 433 Eros. The periodic orbit family with binary period-doubling bifurcations is nearly circular, with almost zero inclination, and is reversed relative to the body of the asteroid 433 Eros. This implies that there are two stable regions separated by one unstable region for the motion around this asteroid. In addition, we found triple bifurcations which consist of two real saddle bifurcations and one period-doubling bifurcation. A periodic orbit family generated from an equilibrium point of asteroid 433 Eros has five bifurcations, which are one real saddle bifurcation, two tangent bifurcations, and two period-doubling bifurcations.

Keywords

Asteroidal system Periodic orbit families Bifurcations 

References

  1. Belton, M.J.S., Veverka, J., Thomas, P., et al.: Galileo encounter with 951 Gaspra: first pictures of an asteroid. Science 257(5077), 1647–1652 (1992) CrossRefADSGoogle Scholar
  2. Broucke, R.A., Elipe, A.: The dynamics of orbits in a potential field of a solid circular ring. Regul. Chaotic Dyn. 10(2), 129–143 (2005) MathSciNetCrossRefMATHADSGoogle Scholar
  3. Chanut, T.G.G., Winter, O.C., Amarante, A., Araújo, N.C.S.: 3D plausible orbital stability close to asteroid (216) Kleopatra. Mon. Not. R. Astron. Soc. Lett. 452(2), 1316–1327 (2015) CrossRefADSGoogle Scholar
  4. Descamps, P., Marchis, F., Berthier, J., et al.: Triplicity and physical characteristics of asteroid (216) Kleopatra. Icarus 211(2), 1022–1033 (2011) CrossRefADSGoogle Scholar
  5. Durda, D.D., Bottke, W.F., Enke, B.L., et al.: The formation of asteroid satellites in large impacts: results from numerical simulations. Icarus 170(1), 243–257 (2004) CrossRefADSGoogle Scholar
  6. Elipe, A., Lara, M.: A simple model for the chaotic motion around (433) Eros. J. Astronaut. Sci. 51(4), 391–404 (2003) MathSciNetGoogle Scholar
  7. Elipe, A., Riaguas, A.: Nonlinear stability under a logarithmic gravity field. Int. Math. J. 3, 435–453 (2003) MathSciNetMATHGoogle Scholar
  8. Fahnestock, E.G., Scheeres, D.J.: Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4. Icarus 194(2), 410–435 (2008) CrossRefADSGoogle Scholar
  9. Gong, S., Li, J.: Analytical criteria of Hill stability in the elliptic restricted three body problem. Astrophys. Space Sci. 358(2), 37 (2015a) CrossRefADSGoogle Scholar
  10. Gong, S., Li, J.: Asteroid capture using Lunar flyby. Adv. Space Res. 56(5), 848–858 (2015b) MathSciNetCrossRefADSGoogle Scholar
  11. Gutierrez-Romero, S., Palacian, J.F., Yanguas, P.: The Invariant Manifolds of a Finite Straight Segment. Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, vol. 25, pp. 137–148 (2004) Google Scholar
  12. Hu, W., Scheeres, D.J.: Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planet. Space Sci. 52(8), 685–692 (2004) CrossRefADSGoogle Scholar
  13. Hu, W., Scheeres, D.J.: Periodic orbits in rotating second degree and order gravity fields. Chin. J. Astron. Astrophys. 8(1), 108 (2008) CrossRefADSGoogle Scholar
  14. Jiang, Y.: Equilibrium points and periodic orbits in the vicinity of asteroids with an application to 216 Kleopatra. Earth Moon Planets 115(1–4), 31–44 (2015) CrossRefMATHADSGoogle Scholar
  15. Jiang, Y., Baoyin, H.: Orbital mechanics near a rotating asteroid. J. Astrophys. Astron. 35(1), 17–38 (2014) CrossRefADSGoogle Scholar
  16. Jiang, Y., Baoyin, H., Li, J., Li, H.: Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 349(1), 83–106 (2014) CrossRefADSGoogle Scholar
  17. Jiang, Y., Yu, Y., Baoyin, H.: Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn. 81(1–2), 119–140 (2015a) MathSciNetCrossRefGoogle Scholar
  18. Jiang, Y., Baoyin, H., Li, H.: Periodic motion near the surface of asteroids. Astrophys. Space Sci. 360(2), 63 (2015b) CrossRefADSGoogle Scholar
  19. Jiang, Y., Baoyin, H., Wang, X., et al.: Order and chaos near equilibrium points in the potential of rotating highly irregular-shaped celestial bodies. Nonlinear Dyn. 83(1), 231–252 (2016) MathSciNetCrossRefGoogle Scholar
  20. Liu, X., Baoyin, H., Ma, X.: Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube. Astrophys. Space Sci. 333, 409–418 (2011) CrossRefMATHADSGoogle Scholar
  21. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999) CrossRefMATHGoogle Scholar
  22. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, Berlin (2009) MATHGoogle Scholar
  23. Ni, Y., Baoyin, H., Li, J.: Orbit dynamics in the vicinity of asteroids with solar perturbation. In: Proceedings of the International Astronautical Congress, vol. 7, pp. 4610–4620 (2014) Google Scholar
  24. Riaguas, A., Elipe, A., Lara, M.: Periodic orbits around a massive straight segment. Celest. Mech. Dyn. Astron. 73(1/4), 169–178 (1999) MathSciNetCrossRefMATHADSGoogle Scholar
  25. Riaguas, A., Elipe, A., López-Moratalla, T.: Non-linear stability of the equilibria in the gravity field of a finite straight segment. Celest. Mech. Dyn. Astron. 81(3), 235–248 (2001) MathSciNetCrossRefMATHADSGoogle Scholar
  26. Scheeres, D.J.: Orbital mechanics about small bodies. Acta Astronaut. 72, 1–14 (2012) CrossRefADSGoogle Scholar
  27. Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: Orbits close to asteroid 4769 Castalia. Icarus 121(1), 67–87 (1996) CrossRefADSGoogle Scholar
  28. Scheeres, D.J., Ostro, S.J., Hudson, R.S., Dejong, E.M., Suzuki, S.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132(1), 53–79 (1998) CrossRefADSGoogle Scholar
  29. Takahashi, Y., Scheeres, D.J., Werner, R.A.: Surface gravity fields for asteroids and comets. J. Guid. Control Dyn. 36(2), 362–374 (2013) CrossRefADSGoogle Scholar
  30. Tsuchiyama, A., Uesugi, M., Matsushima, T., et al.: Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333(6046), 1125–1128 (2011) CrossRefADSGoogle Scholar
  31. Veverka, J., Farquhar, B., Robinson, M., et al.: The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413(6854), 390–393 (2001) CrossRefADSGoogle Scholar
  32. Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59(3), 253–278 (1994) CrossRefMATHADSGoogle Scholar
  33. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1997) MathSciNetCrossRefMATHADSGoogle Scholar
  34. Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012) CrossRefADSGoogle Scholar
  35. Yu, Y., Baoyin, H., Jiang, Y.: Constructing the natural families of periodic orbits near irregular bodies. Mon. Not. R. Astron. Soc. 453(1), 3269–3277 (2015) MathSciNetADSGoogle Scholar
  36. Zeng, X., Jiang, F., Li, J., Baoyin, H.: Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophys. Space Sci. 356(1), 29–42 (2015) CrossRefADSGoogle Scholar
  37. Zhuravlev, S.G.: Stability of the libration points of a rotating triaxial ellipsoid. Celest. Mech. 6(3), 255–267 (1972) CrossRefMATHADSGoogle Scholar
  38. Zotos, E.E.: Classifying orbits in the restricted three-body problem. Nonlinear Dyn. 82(3), 1233–1250 (2015a) MathSciNetCrossRefGoogle Scholar
  39. Zotos, E.E.: Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem. Astrophys. Space Sci. 360(1), 1 (2015b) MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Astronautic DynamicsXi’an Satellite Control CenterXi’anChina

Personalised recommendations