Advertisement

Families of three-dimensional periodic solutions in the circular restricted four-body problem

  • K. E. Papadakis
Original Article

Abstract

In this paper we study the 3D symmetric periodic orbits of the circular restricted four-body problem, through their bifurcation from plane orbits. To this end, we calculate the special generating planar periodic orbits, i.e. the vertical-critical orbits, from five basic planar families of symmetric periodic orbits of the problem. We study the simplest 3D periodic orbits and so we restrict our calculations to simple vertical bifurcation orbits leading to families of one or two revolutions three-dimensional symmetric periodic orbits. We found 21 such families of simple 3D symmetric periodic orbits and typical orbits of all symmetry type 3D orbits are presented. The stability of each calculated 3D periodic orbit is also studied. Characteristic curves as well as stability diagrams of families of 3D periodic orbits are illustrated.

Keywords

Four-body problem Stability Three-dimensional orbits Vertical-critical orbits 

References

  1. Álvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121, 191–210 (2015) MathSciNetCrossRefGoogle Scholar
  2. Álvarez-Ramírez, M., Vidal, C.: Dynamical aspects of an equilateral restricted four-body problem. Math. Probl. Eng. 2009, 1–23 (2009). doi: 10.1155/2009/181360 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Álvarez-Ramírez, M., Skea, J., Stuchi, T.: Nonlinear stability analysis in a equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121, 191–210 (2015) CrossRefGoogle Scholar
  4. Andoyer, M.H.: Sur les solutions periodiques voisines des positions d’equilibre relatif, dans le probleme des n corps. Bull. Astron. 23, 129–146 (1906) Google Scholar
  5. Asiuque, M., Prasad, U., Hassan, M., Suraj, M.: On the photogravitational R4BP when the third primary is an oblate/prolate spheroid. Astrophys. Space Sci. 360, 13 (2015) ADSCrossRefGoogle Scholar
  6. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos 21, 2179–2193 (2011a) MathSciNetCrossRefzbMATHGoogle Scholar
  7. Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011b) ADSCrossRefzbMATHGoogle Scholar
  8. Baltagiannis, A.N., Papadakis, K.E.: Periodic solutions in the Sun-Jupiter-Trojan Asteroid-Spacecraft system. Planet. Space Sci. 75, 148–157 (2013) ADSCrossRefGoogle Scholar
  9. Brumberg, V.A.: Permanent configurations in the problem of four bodies and their stability. Sov. Astron. 34, 57–79 (1957) ADSMathSciNetGoogle Scholar
  10. Burgos-Garcia, J., Delgado, J.: On the “Blue sky catastrophe” termination in the restricted four body problem. Celest. Mech. Dyn. Astron. 117, 113–136 (2013) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Burgos-Garcia, J., Gidea, M.: Hill’s approximation in a restricted four-body problem. Celest. Mech. Dyn. Astron. 122, 117–141 (2015) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar restricted four-body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. Gascheau, M.: Examen d’une classe d’equations differentielles et application a un cas particulier du probleme des trois corps. Compt. Rend. 16, 393–394 (1843) Google Scholar
  14. Hénon, M.: Exploration numérique du problème restreint, II: masses égales, stabilité des orbites périodiques. Ann. Astrophys. 28, 992–1007 (1965) ADSzbMATHGoogle Scholar
  15. Hénon, M.: Vertical stability of periodic orbits in the restricted problem, I: equal masses. Astron. Astrophys. 28, 415–426 (1973) ADSzbMATHGoogle Scholar
  16. Hüttenhain, E.: Räumliche infinitesimale Bahnen um die Librationspunkte im Geradlinien-Fall der (3+1)-Körper. Astron. Nachr. 250, 298–316 (1933) CrossRefzbMATHGoogle Scholar
  17. Kloppenborg, B., et al.: Infrared images of the transiting disk in the \(\varepsilon\) Aurigae system. Nat. Lett. 464, 870–872 (2010) ADSCrossRefGoogle Scholar
  18. Kumari, R., Kushvah, B.: Stability regions of equilibrium points in restricted four-body problem with oblateness effects. Astrophys. Space Sci. 349, 693–704 (2014) ADSCrossRefGoogle Scholar
  19. Lindow, M.: Ein Spezialfall des Vierkörperproblems. Astron. Nachr. 216, 21–22 (1922) CrossRefGoogle Scholar
  20. Lindow, M.: Eine Trasformation für das Problem der n+1 Körper. Astron. Nachr. 219, 142–154 (1923) ADSCrossRefGoogle Scholar
  21. MacMillan, W.D., Bartky, W.: Permanent configurations in the problem of four bodies. Trans. Am. Math. Soc. 34, 838–875 (1932) MathSciNetCrossRefzbMATHGoogle Scholar
  22. Markellos, V.V., Goudas, C., Katsiaris, G.: In: Investigating the Universe, vol. 319. Reidel, Dordrecht (1981) Google Scholar
  23. Moulton, F.R.: On a class of particular solutions of the problem of four bodies. Trans. Am. Math. Soc. 1, 17–29 (1900) MathSciNetCrossRefzbMATHGoogle Scholar
  24. Oberti, P.: Lagrangian satellites of Tethys and Dione II – theory of motion. Astron. Astrophys. 228, 275–283 (1990) ADSMathSciNetGoogle Scholar
  25. Palmore, J.: Relative equilibria of the n-body problem. Thesis, University of California, Berkeley, CA (1973) Google Scholar
  26. Pedersen, P.: Librationspunkte im restringierten vierkorperproblem. Dan. Mat. Fys. Medd. 21, 1–80 (1944) MathSciNetzbMATHGoogle Scholar
  27. Pedersen, P.: Stabilitatsuntersuchungen im restringierten vierkorperproblem. Dan. Mat. Fys. Medd. 26, 1–37 (1952) MathSciNetzbMATHGoogle Scholar
  28. Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395–434 (1979) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Robutel, P., Gabern, F.: The resonant structure of Jupiter’s Trojan asteroids, I: long-term stability and diffusion. Mon. Not. R. Astron. Soc. 372, 1463–1482 (2006) ADSCrossRefGoogle Scholar
  30. Schaub, W.: Über einen speziellen Fall des Fünfkörperproblems. Astron. Nachr. 236, 34–54 (1929) ADSzbMATHGoogle Scholar
  31. Schwarz, R., Süli, g., Dvorac, R., Pilat-Lohinger, E.: Stability of Trojan planets in multi-planetary systems. Celest. Mech. Dyn. Astron. 104, 69–84 (2009a) ADSCrossRefzbMATHGoogle Scholar
  32. Schwarz, R., Süli, g., Dvorac, R.: Dynamics of possible Trojan planets in binary systems. Mon. Not. R. Astron. Soc. 398, 2085–2090 (2009b) ADSCrossRefGoogle Scholar
  33. Simo, C.: Relative equilibrium solutions in the four body problem. Celest. Mech. 18, 165–184 (1978) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Singh, J., Vincent, A.: Out of plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015) ADSCrossRefGoogle Scholar
  35. Van Hamme, W., Wilson, R.E.: The restricted four-body problem and epsilon Aurigae. Astrophys. J. 306, L33–L36 (1986) ADSCrossRefGoogle Scholar
  36. Zagouras, C.G., Markellos, V.V.: Axisymmetric periodic orbits of the restricted problem in three dimensions. Astron. Astrophys. 59, 79–89 (1977) ADSMathSciNetzbMATHGoogle Scholar
  37. Zhikun, S., Xuhua, C., Cuiping, L.: The existence of transversal homoclinic orbits in a planar circular restricted four-body problem. Celest. Mech. Dyn. Astron. 115, 299–309 (2013) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil Engineering, Division of Structural EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations