Updated rotating mass dipole with oblateness of one primary (I): equilibria in the equator and their stability

Original Article

Abstract

The rotating mass dipole is possibly used to approximate the potential distribution of nearly axisymmetrical elongated celestial bodies. To increase the accuracy of the approximation, an updated dipole system is proposed by taking the oblateness of one primary into account. The system is composed with a point mass and a spheroid with oblateness connected with a massless rod. Dynamic equations of the updated dipole system in body-fixed frame are derived in canonical system units. The potential distribution is determined with three parameters, including the mass ratio, the force ratio and the oblateness of the primary. Equilibrium points along with zero-velocity curves are given in the equatorial plane. The influence of the above three parameters on the distribution of equilibria are illustrated via numerical simulations. The stability of the system equilibria is discussed under linearized dynamic equations around each equilibrium point.

Keywords

Updated rotating mass dipole Oblateness of primary Equilibrium points Stability of equilibria 

References

  1. Arredondo, J.A., Guo, J.G., Stoica, C., Tamayo, C.: On the restricted three body problem with oblate primaries. Astrophys. Space Sci. 341, 315–322 (2012) ADSCrossRefMATHGoogle Scholar
  2. Bartczak, P., Breiter, S.: Double material segment as the model of irregular bodies. Celest. Mech. Dyn. Astron. 86(4), 131–141 (2003) ADSMathSciNetCrossRefMATHGoogle Scholar
  3. Bartczak, P., Breiter, S., Jusiel, P.: Ellipsoids, material points and material segments. Celest. Mech. Dyn. Astron. 96(1), 31–48 (2006) ADSMathSciNetCrossRefMATHGoogle Scholar
  4. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics (revised edition). AIAA Education Series, pp. 371–385 (1999) Google Scholar
  5. Beevi, A.S., Sharma, R.K.: Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem. Astrophys. Space Sci. 340, 245–261 (2012) ADSCrossRefGoogle Scholar
  6. Breiter, S., Melendo, B., Bartczak, P., Wytrzyszczak, I.: Synchronous motion in the Kinoshita problem: application to satellites and binary asteroids. Astron. Astrophys. 437(2), 753–764 (2005) ADSCrossRefGoogle Scholar
  7. Chernnyhk, S.V.: On the stability of libration points in a certain gravitational field. Vestn. Leningr. Univ. 2(8), 73–77 (1987) Google Scholar
  8. Cui, P.Y., Qiao, D.: The present status and prospects in the research of orbital dynamics and control near small celestial bodies. Theor. Appl. Mech. Lett. 4(1), 1–14 (2014) CrossRefGoogle Scholar
  9. Eckhardt, D.H., Pestaña, J.L.G.: Technique for modeling the gravitational field of a galactic disk. Astrophys. J. 572(2), 135–137 (2002) ADSCrossRefGoogle Scholar
  10. Goździewski, K.: Stability of the triangular libration points in the unrestricted planar problem of a symmetric rigid body and a point mass. Celest. Mech. Dyn. Astron. 85(1), 79–103 (2003) ADSCrossRefMATHGoogle Scholar
  11. Goździewski, K., Maciejewski, A.J.: Nonlinear stability of the Lagrangian libration points in the Chermnykh problem. Celest. Mech. Dyn. Astron. 70(1), 41–58 (1998) ADSCrossRefMATHGoogle Scholar
  12. Goździewski, K., Maciejewski, A.J.: Unrestricted planar problem of a symmetric body and a point mass: triangular libration points and their stability. Celest. Mech. Dyn. Astron. 75(4), 251–285 (1999) ADSCrossRefMATHGoogle Scholar
  13. Guibout, V., Scheeres, D.J.: Stability of surface motion on a rotating ellipsoid. Celest. Mech. Dyn. Astron. 87(3), 263–290 (2003) ADSMathSciNetCrossRefMATHGoogle Scholar
  14. Hirabayashi, M., Morimoto, M.Y., Yano, H., Kawaguchi, J., Bellerose, J.: Linear stability of collinear equilibrium points around an asteroid as a two-connected-mass: application to fast rotating asteroid 2000EB14. Icarus 206(2), 780–782 (2010) ADSCrossRefGoogle Scholar
  15. Idrisi, M.J.: Existence and stability of the libration points in CR3BP when the smaller primary is an oblate spheroid. Astrophys. Space Sci. 354, 311–325 (2014) ADSCrossRefGoogle Scholar
  16. Kirpichnikov, S.N., Kokoriev, A.A.: On the stability of stationary collinear Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric. Vestn. Leningr. Univ. 3(1), 72–84 (1988) Google Scholar
  17. Kokoriev, A.A., Kirpichnikov, S.N.: On the stability of stationary triangular Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric. Vestn. Leningr. Univ. 1(1), 75–84 (1988) Google Scholar
  18. Li, X.Y., Qiao, D., Cui, P.Y.: The equilibria and periodic orbits around a dumbbell-shaped body. Astrophys. Space Sci. 348(2), 417–426 (2013) ADSCrossRefGoogle Scholar
  19. Liu, X.D., Baoyin, H.X., Ma, X.R.: Periodic orbits in the gravity field of a fixed homogeneous cube. Astrophys. Space Sci. 334(2), 357–364 (2011) ADSCrossRefMATHGoogle Scholar
  20. Murray, C.D., Dermott, S.F.: Solar System Dynamics, 1st edn., pp. 63–129. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  21. Oberti, P., Vienne, A.: An upgraded theory for Helene, Telesto, and Calypso. Astron. Astrophys. 397, 353–359 (2003) ADSCrossRefGoogle Scholar
  22. Prieto-Llanos, T., Gómez-Tierno, M.A.: Stationkeeping at libration points of natural elongated bodies. J. Guid. Control Dyn. 17(4), 787–794 (1994) ADSCrossRefGoogle Scholar
  23. Sharma, R.K.: Periodic orbits of the second kind in the restricted three-body problem when the more massive primary is an oblate spheroid. Astrophys. Space Sci. 76, 255–258 (1981) ADSCrossRefMATHGoogle Scholar
  24. Sharma, R.K., Subba Rao, P.V.: Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids. Celest. Mech. Dyn. Astron. 12(2), 189–201 (1975) CrossRefMATHGoogle Scholar
  25. Sharma, R.K., Subba Rao, P.V.: Stationary solutions and their characteristic exponents in the restricted three-body problem. Celest. Mech. Dyn. Astron. 13(2), 137–149 (1976) MathSciNetCrossRefMATHGoogle Scholar
  26. Sharma, R.K., Subba Rao, P.V.: A case of commensurability induced by oblateness. Celest. Mech. Dyn. Astron. 18(2), 185–194 (1978) CrossRefMATHGoogle Scholar
  27. Subba Rao, P.V., Sharma, R.K.: Effect of oblateness on the non-linear stability of L4 in the restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 291–312 (1997) ADSMathSciNetCrossRefMATHGoogle Scholar
  28. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967) Google Scholar
  29. Taylor, P.A., Margot, J.L.: Tidal end states of binary asteroid systems with a nonspherical component. Icarus 229, 418–422 (2014) ADSCrossRefGoogle Scholar
  30. Vidyakin, V.V.: The plane restricted circular problem of three spheroids. Soviet Astron. Astron. J. 18, 641 (1974). Translated from Astron. Zh. 51, 1087–1094 (1974) ADSMathSciNetGoogle Scholar
  31. Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59(4), 253–278 (1994) ADSCrossRefMATHGoogle Scholar
  32. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1997) ADSMathSciNetCrossRefMATHGoogle Scholar
  33. Zeng, X.Y., Jiang, F.H., Li, J.F., Baoyin, H.X.: Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophys. Space Sci. 355, 2187 (2015) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations