Skip to main content
Log in

Simulation of the in-flight background for HXMT/HE

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The Hard X-ray Modulation Telescope (HXMT) is a broad-band X-ray astronomical satellite from 1 to 250 keV. Understanding the X-ray background in detail will help to achieve a good performance of the instrument. In this work, we make use of the mass modeling technique to estimate the background of High Energy Telescope (HE) aboard HXMT. It consists of three steps. First, we built a complete geometric model of HXMT. Then based on the investigation about the space environment concerning HXMT low-earth orbit, in our simulation we considered cosmic rays, cosmic X-ray background (CXB), South Atlantic Anomaly (SAA) trapped particles, the albedo gamma, and neutrons from interaction of cosmic rays with the Earth’s atmosphere. Finally, the Shielding Physics List supplied by Geant4 collaborations was adopted. According to our simulation, (1) the total background of HXMT/HE is about 540 count/s on average over 20–250 keV energy band after 100 days in orbit; (2) the delayed component caused by cosmic rays and SAA trapped particles dominates the full energy band of HXMT/HE; (3) some emission lines are prominent in the background continuum spectrum and will be used for in-orbit calibration; (4) the estimated sensitivity is ∼0.1 mCrab at 50 keV with an exposure of 106 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://geant4.web.cern.ch/geant4/.

  2. https://www.spenvis.oma.be/.

  3. http://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php.

  4. http://indico.cern.ch/event/62629/session/7/contribution/26/material/slides/1.pdf.

References

  • Abdo, A., Ackermann, M., Ajello, M., Atwood, W., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Baughman, B., Bechtol, K., et al.: Phys. Rev. Lett. 104(10), 101101 (2010)

    Article  ADS  Google Scholar 

  • Alcaraz, J., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., Babucci, E., Baldini, L., Basile, M., et al.: Phys. Lett. B 484(1), 10 (2000a)

    Article  ADS  Google Scholar 

  • Alcaraz, J., Alvisi, D., Alpat, B., Ambrosi, G., Anderhub, H., Ao, L., Arefiev, A., Azzarello, P., Babucci, E., Baldini, L., et al.: Phys. Lett. B 472(1), 215 (2000b)

    Article  ADS  Google Scholar 

  • Armstrong, T., Chandler, K., Barish, J.: J. Geophys. Res. 78(16), 2715 (1973)

    Article  ADS  Google Scholar 

  • Carter, J., Read, A.: Astron. Astrophys. 464(3), 1155 (2007)

    Article  ADS  Google Scholar 

  • Dean, A., Fan, L., Byard, K., Goldwurm, A., Hall, C.: Astron. Astrophys. 219, 358 (1989)

    ADS  Google Scholar 

  • Dean, A., Bird, A., Diallo, N., Ferguson, C., Lockley, J., Shaw, S., Westmore, M., Willis, D.: Space Sci. Rev. 105(1–2), 285 (2003)

    Article  ADS  Google Scholar 

  • Gehrels, N.: Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 313(3), 513 (1992)

    Article  ADS  Google Scholar 

  • Imhof, W., Nakano, G., Reagan, J.: J. Geophys. Res. 81(16), 2835 (1976)

    Article  ADS  Google Scholar 

  • Jing, J., Yong, C., Shuang-Nan, Z., Shu, Z., Xin-Qiao, L., Gang, L.: Chin. Phys. C 34(1), 66 (2010)

    Article  ADS  Google Scholar 

  • Li, G., Wu, M., Zhang, S., Jin, Y.: Chin. J. Space Sci. 28(6), 531 (2008)

    MATH  Google Scholar 

  • Li, T.-P.: Nucl. Phys. B, Proc. Suppl. 166, 131 (2007)

    Article  ADS  Google Scholar 

  • Lu, Y.: HXMT telescope science observation scheme. PhD thesis, Institute of High Energy Physics, Chinese Academy of Science (2011)

  • Mizuno, T., Kamae, T., Godfrey, G., Handa, T., Thompson, D., Lauben, D., Fukazawa, Y., Ozaki, M.: Astrophys. J. 614(2), 1113 (2004)

    Article  ADS  Google Scholar 

  • Peterson, L.E.: Annu. Rev. Astron. Astrophys. 13, 423 (1975)

    Article  ADS  Google Scholar 

  • Porras, E., Sánchez, F., Reglero, V., Cordier, B., Dean, A., Lei, F., Pérez, J., Swinyard, B.: Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 160(1), 73 (2000)

    Article  ADS  Google Scholar 

  • Rothschild, R., Blanco, P., Gruber, D., Heindl, W., MacDonald, D., Marsden, D., Pelling, M., Wayne, L., Hink, P.: Astrophys. J. Lett. 496(1), 538 (1998)

    Article  ADS  Google Scholar 

  • Ryan, J.M., Jennings, M.C., Radwin, M.D., Zych, A.D., White, R.S.: J. Geophys. Res. Space Phys. 84(A9), 5279 (1979)

    Article  ADS  Google Scholar 

  • Zhang, S., Lu, F., Zhang, S., Li, T.: In: SPIE Astronomical Telescopes + Instrumentation, p. 914421. International Society for Optics and Photonics (2014)

  • Zombeck, M.V.: Handbook of Space Astronomy and Astrophysics, pp. 219–230. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

Download references

Acknowledgements

We thank Drs. Fan Lei and Ming Xu for their great help with Geant4 mass modeling. We are grateful to Prof. Wei Cui for his suggestions and discussions. This work is supported by National Natural Science Foundation of China under the grant No. 11403026, by 973 Program of China under grant 2014CB845800, and by the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences under grant No. XDA04010300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Zhang, J., Song, LM. et al. Simulation of the in-flight background for HXMT/HE. Astrophys Space Sci 360, 47 (2015). https://doi.org/10.1007/s10509-015-2559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2559-1

Keywords

Navigation