Advertisement

Gravitational waves in fourth order gravity

  • S. CapozzielloEmail author
  • A. Stabile
Original Article

Abstract

In the post-Minkowskian limit approximation, we study gravitational wave solutions for general fourth-order theories of gravity. Specifically, we consider a Lagrangian with a generic function of curvature invariants \(f(R, R_{\alpha\beta}R^{\alpha\beta}, R_{\alpha\beta\gamma\delta }R^{\alpha\beta\gamma\delta})\). It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by \(R_{\alpha\beta}R^{\alpha\beta}\) are present, otherwise, for any \(f(R)\) gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.

Keywords

Gravitational waves Modified theories of gravity Weak field limit 

Notes

Acknowledgements

SC acknowledge INFN Sez. di Napoli (Iniziative Specifiche QGSKY, and TEONGRAV) for financial support.

References

  1. Alexander, S., Yunes, N.: Phys. Rep. 480, 1 (2009) MathSciNetADSCrossRefGoogle Scholar
  2. Astashenok, A., Capozziello, S., Odintsov, S.D.: J. Cosmol. Astropart. Phys. 12, 040 (2013) ADSCrossRefGoogle Scholar
  3. Astashenok, A., Capozziello, S., Odintsov, S.D.: Phys. Rev. D 89, 103509 (2014) ADSCrossRefGoogle Scholar
  4. Bamba, K., Capozziello, S., De Laurentis, M., Nojiri, S., Saez-Gómez, D.: Phys. Lett. B 727, 194 (2013) ADSCrossRefGoogle Scholar
  5. Bargmann, V., Wigner, E.P.: Proc. Natl. Acad. Sci. USA 34, 211 (1948) MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. Bergmann, P.G.: Int. J. Theor. Phys. 1, 25 (1968) CrossRefGoogle Scholar
  7. Berry, C.P.L., Gair, J.R.: Phys. Rev. D 83, 104022 (2011) ADSCrossRefGoogle Scholar
  8. Bogdanos, C., Capozziello, S., De Laurentis, M., Nesseris, S.: Astropart. Phys. 34, 236 (2010) ADSCrossRefGoogle Scholar
  9. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Action in Quantum Gravity. IOP Publ., Bristol (1992) Google Scholar
  10. Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011) MathSciNetADSCrossRefGoogle Scholar
  11. Capozziello, S., De Laurentis, M.: Ann. Phys. 524, 545 (2012) CrossRefzbMATHGoogle Scholar
  12. Capozziello, S., Stabile, A.: Class. Quantum Gravity 26, 085019 (2009) MathSciNetADSCrossRefGoogle Scholar
  13. Capozziello, S., Vignolo, S.: Class. Quantum Gravity 26, 175013 (2009a) MathSciNetADSCrossRefGoogle Scholar
  14. Capozziello, S., Vignolo, S.: Class. Quantum Gravity 26, 168001 (2009b) MathSciNetADSCrossRefGoogle Scholar
  15. Capozziello, S., Stabile, A., Troisi, A.: Phys. Rev. D 76, 104019 (2007) MathSciNetADSCrossRefGoogle Scholar
  16. Capozziello, S., Stabile, A., Troisi, A.: Mod. Phys. Lett. A 24(9), 659 (2009) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. Capozziello, S., De Laurentis, M., Stabile, A.: Class. Quantum Gravity 27, 165008 (2010a) ADSCrossRefGoogle Scholar
  18. Capozziello, S., Stabile, A., Troisi, A.: Int. J. Theor. Phys. 49, 1251 (2010b) MathSciNetCrossRefzbMATHGoogle Scholar
  19. Capozziello, S., Stabile, A., Troisi, A.: Phys. Lett. B 686, 79 (2010c) MathSciNetADSCrossRefGoogle Scholar
  20. Capozziello, S., De Laurentis, M., Paolella, M., Ricciardi, G.: Int. J. Geom. Methods Mod. Phys. 12, 1550004 (2015a) MathSciNetCrossRefGoogle Scholar
  21. Capozziello, S., Lambiase, G., Sakellariadou, M., Stabile, A., Stabile, An.: Phys. Rev. D 85, 044012 (2015b) ADSCrossRefGoogle Scholar
  22. De Laurentis, M., Lopez-Revelles, A.J.: Int. J. Geom. Methods Mod. Phys. 11, 1450082 (2014) MathSciNetCrossRefGoogle Scholar
  23. de Rham, C.: Living Rev. Relativ. 17, 7 (2014) ADSGoogle Scholar
  24. de Witt, B.S.: Dynamical Theory of Groups and Fields. Gordon and Breach, New York (1965) Google Scholar
  25. Delsate, T., Hilditch, D., Witek, H.: Phys. Rev. D 91, 024027 (2015) ADSCrossRefGoogle Scholar
  26. Dyda, S., Flanagan, E.E., Kamionkowski, M.: Phys. Rev. D 86, 124031 (2012). Johns Hopkins U. ADSCrossRefGoogle Scholar
  27. Eardley, D.M., Lee, D.L., Lightman, A.P., Wagoner, R.V., Will, C.M.: Phys. Rev. Lett. 30, 884 (1973) ADSCrossRefGoogle Scholar
  28. Kiefer, C.: Quantum Gravity. Oxford Univ. Press, Oxford (2004) zbMATHGoogle Scholar
  29. Lanahan-Tremblay, N., Faraoni, V.: Class. Quantum Gravity 24, 5667 (2007) MathSciNetADSCrossRefzbMATHGoogle Scholar
  30. Landau, L.D., Lifšits, E.M.: Theorie des Champs, vol. II. Mir, Moscow (1970) Google Scholar
  31. Lang, R.N.: Phys. Rev. D 89, 084014 (2014) ADSCrossRefGoogle Scholar
  32. Meszaros, A.: Astrophys. Space Sci. 111, 399 (1985) MathSciNetADSGoogle Scholar
  33. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman and Co., New York (1971) Google Scholar
  34. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  35. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011) MathSciNetADSCrossRefGoogle Scholar
  36. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75(2), 559 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. Querella, L.: Variational principles and cosmological models in higher order gravity. Ph.D. Thesis (1998). arXiv:gr-qc/9902044
  38. Salgado, M.: Class. Quantum Gravity 23, 4719 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  39. Santos, E.: Phys. Rev. D 81, 064030 (2010) ADSCrossRefGoogle Scholar
  40. Schmidt, H.J.: Astron. Nachr. 307, 339 (1986) ADSCrossRefzbMATHGoogle Scholar
  41. Schmidt, H.J.: Phys. Rev. D 78, 023512 (2008) ADSCrossRefGoogle Scholar
  42. Stabile, A.: Phys. Rev. D 82, 064021 (2010a) ADSCrossRefGoogle Scholar
  43. Stabile, A.: Phys. Rev. D 82, 124026 (2010b) ADSCrossRefGoogle Scholar
  44. Stabile, A., Capozziello, S.: Phys. Rev. D 87, 064002 (2013) ADSCrossRefGoogle Scholar
  45. Stabile, A., Scelza, G.: Phys. Rev. D 84, 124023 (2011) ADSCrossRefGoogle Scholar
  46. Stabile, A., Stabile, An.: Phys. Rev. D 84, 044014 (2012) ADSCrossRefGoogle Scholar
  47. Stabile, A., Stabile, An., Capozziello, S.: Phys. Rev. D 88, 124011 (2013) ADSCrossRefGoogle Scholar
  48. Stein, L.C., Yunes, N.: Phys. Rev. D 83, 064038 (2011) ADSCrossRefGoogle Scholar
  49. Stelle, K.S.: Phys. Rev. D 16, 953 (1977) MathSciNetADSCrossRefGoogle Scholar
  50. Stelle, K.S.: Gen. Relativ. Gravit. 9, 353 (1978) MathSciNetADSCrossRefGoogle Scholar
  51. Trimble, V.: Annu. Rev. Astron. Astrophys. 25, 425 (1987) ADSCrossRefGoogle Scholar
  52. van Dam, H., Veltman, M.G.: Nucl. Phys. B 22, 397 (1970) ADSCrossRefGoogle Scholar
  53. Wagoner, R.V.: Phys. Rev. D 1, 3209 (1970) ADSCrossRefGoogle Scholar
  54. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972) Google Scholar
  55. Wigner, E.P.: Ann. Math. 40, 149 (1939) MathSciNetCrossRefGoogle Scholar
  56. Zakharov, V.I.: JETP Lett. 12, 312 (1970) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di Napoli “Federico II”Complesso Universitario di Monte Sant’AngeloNapoliItaly
  2. 2.Istituto Nazionale di Fisica Nucleare (INFN) Sezione di NapoliComplesso Universitario di Monte Sant’AngeloNapoliItaly
  3. 3.Gran Sasso Science Institute (INFN)L’AquilaItaly
  4. 4.Dipartimento di IngegneriaUniversità del SannioBeneventoItaly

Personalised recommendations