Advertisement

Nonlinear spinor fields in Bianchi type-I spacetime: problems and possibilities

  • Bijan Saha
Original Article

Abstract

Within the scope of Bianchi type-I cosmological model we study the role of spinor field in the evolution of the Universe. It is found that due to the spinor affine connections the energy momentum tensor of the spinor becomes non-diagonal, whereas the Einstein tensor is diagonal. This non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions or on both of them. In case if the restrictions are imposed on the components of spinor field only, we come to a situation when spinor field becomes massless and invariants constructed from bilinear spinor forms also become trivial. Imposing restriction wholly on metric functions we obtain FRW model, while if the restrictions are imposed both on metric functions and spinor field components, we come to LRS BI model. In both cases the system is solved completely. It was found that if the relation between the pressure and energy density obeys a barotropic equation of state, only a non-trivial spinor mass can give rise to a dynamic EoS parameter.

Keywords

Spinor field Dark energy Anisotropic cosmological models Isotropization 

Notes

Acknowledgements

This work is supported in part by a joint Romanian-LIT, JINR, Dubna Research Project, theme no. 05-6-1119-2014/2016. I also want to thank Prof. A.A. Starobinsky and Prof. Ashoke Sen for valuable comments on this paper. Taking the opportunity I would also like to thank the reviewers for some helpful discussions and references.

References

  1. Abbasi, R., et al.: Astrophys. J. 718, L194 (2010) CrossRefADSGoogle Scholar
  2. Abbasi, R., et al.: Astrophys. J. 740, 16 (2011) CrossRefADSGoogle Scholar
  3. Abbasi, R., et al.: Astrophys. J. 746, 33 (2012) CrossRefADSGoogle Scholar
  4. Abdo, A.A., et al.: Phys. Rev. Lett. 101, 221101 (2008) CrossRefADSGoogle Scholar
  5. Abdo, A.A., et al.: Astrophys. J. 698, 2121 (2009) CrossRefADSGoogle Scholar
  6. Abeysekara, A.U., et al.: (2014). arXiv:1408.4805v2 [astro-ph.HE]
  7. Aglietta, M., et al.: Astrophys. J. Lett. 692, L130 (2009) CrossRefADSGoogle Scholar
  8. Amenomori, M., et al.: Astrophys. J. 626, L29 (2005) CrossRefADSGoogle Scholar
  9. Armendáriz-Picón, C., Greene, P.B.: Gen. Relativ. Gravit. 35, 1637 (2003) CrossRefADSzbMATHGoogle Scholar
  10. Bartoli, B., et al.: Phys. Rev. D, Part. Fields 88, 082001 (2013) CrossRefADSGoogle Scholar
  11. Böhmer, C.G.: Phys. Rev. D 77, 123535 (2008) CrossRefADSGoogle Scholar
  12. Böhmer, C.G., Burnett, J., Mota, D.F., Shaw, D.J.: J. High Energy Phys. 07, 053 (2010) CrossRefGoogle Scholar
  13. Bronnikov, K.A., Chudaeva, E.N., Shikin, G.N.: Class. Quantum Gravity 21, 3389 (2004) CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002) CrossRefADSGoogle Scholar
  15. Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011) CrossRefADSMathSciNetGoogle Scholar
  16. Capozziello, S., Cianci, R., Stornaiolo, C., Vignolo, S.: Class. Quantum Gravity 24, 6417 (2007) CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. Chevallier, M., Polarski, D.: Int. J. Mod. Phys. D 10, 213 (2001) CrossRefADSGoogle Scholar
  18. de Jong, J.: In: Proc. 32nd ICRC, Beijing, China (2011) Google Scholar
  19. de Souza, R.C., Kremer, G.M.: Class. Quantum Gravity 25, 225006 (2008) CrossRefADSGoogle Scholar
  20. Di Sciascio, G.: EJP Web Conf, vol. 52, p. 04004 (2013) Google Scholar
  21. Fabbri, L.: Gen. Relativ. Gravit. 43, 1607 (2011) CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. Fabbri, L.: Phys. Rev. D 85, 0475024 (2012) CrossRefGoogle Scholar
  23. Fabbri, L.: Int. J. Theor. Phys. 52, 634 (2013) CrossRefzbMATHGoogle Scholar
  24. Guillian, G., et al.: Phys. Rev. D, Part. Fields 75, 062003 (2007) CrossRefADSGoogle Scholar
  25. Guth, A.H.: Phys. Rev. D 23, 347 (1981) CrossRefADSGoogle Scholar
  26. Heisenberg, W.: Physica 19, 897 (1953) CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. Heisenberg, W.: Rev. Mod. Phys. 29, 269 (1957) CrossRefADSzbMATHMathSciNetGoogle Scholar
  28. Henneaux, M.: Phys. Rev. D 21, 857 (1980) CrossRefADSMathSciNetGoogle Scholar
  29. Hinshaw, G., et al.: Astrophys. J. Suppl. Ser. 180, 225 (2009) CrossRefADSGoogle Scholar
  30. Huterer, D., Turner, M.S.: Phys. Rev. D 64, 123527 (2001) CrossRefADSGoogle Scholar
  31. Kibble, T.W.B.: J. Math. Phys. 2, 212 (1961) CrossRefADSzbMATHMathSciNetGoogle Scholar
  32. Knop, R.K., et al.: Astrophys. J. 598, 102 (2003) CrossRefADSGoogle Scholar
  33. Komatsu, E., et al.: Astrophys. J. Suppl. Ser. 180, 330 (2009) CrossRefADSGoogle Scholar
  34. Krechet, V.G., Fel’chenkov, M.L., Shikin, G.N.: Gravit. Cosmol. 14(3(55)), 292 (2008) CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. Kremer, G.M., de Souza, R.C.: (2013). arXiv:1301.5163v1 [gr-qc]
  36. Lee, J., Lee, T.H., Oh, P.: Phys. Rev. D 86, 107301 (2012) CrossRefADSGoogle Scholar
  37. Linder, E.V.: Phys. Rev. Lett. 90, 91301 (2003) CrossRefADSGoogle Scholar
  38. Linder, E.V.: Gen. Relativ. Gravit. 40, 329 (2008) CrossRefADSzbMATHMathSciNetGoogle Scholar
  39. Misner, C.W.: Astrophys. J. 151, 431 (1968) CrossRefADSGoogle Scholar
  40. Ochs, U., Sorg, M.: Int. J. Theor. Phys. 32, 1531 (1993) CrossRefGoogle Scholar
  41. Olive, K.A.: Phys. Rep. 190, 307 (1990) CrossRefADSGoogle Scholar
  42. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  43. Popławski, N.J.: Phys. Lett. B 690, 73 (2010) CrossRefADSMathSciNetGoogle Scholar
  44. Popławski, N.J.: Phys. Rev. D 85, 107502 (2012a) CrossRefADSGoogle Scholar
  45. Popławski, N.J.: Gen. Relativ. Gravit. 44, 1007 (2012b) CrossRefADSzbMATHGoogle Scholar
  46. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988) CrossRefADSGoogle Scholar
  47. Ribas, M.O., Devecchi, F.P., Kremer, G.M.: Phys. Rev. D 72, 123502 (2005) CrossRefADSGoogle Scholar
  48. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) CrossRefADSGoogle Scholar
  49. Saha, B.: Phys. Rev. D 64, 123501 (2001) CrossRefADSMathSciNetGoogle Scholar
  50. Saha, B.: Phys. Rev. D 69, 124006 (2004) CrossRefADSMathSciNetGoogle Scholar
  51. Saha, B.: Chin. J. Phys. 43(6), 1035 (2005) Google Scholar
  52. Saha, B.: Phys. Part. Nucl. 37, S13 (2006a). Suppl. 1 CrossRefGoogle Scholar
  53. Saha, B.: Gravit. Cosmol. 12(46–47), 215 (2006b) ADSzbMATHGoogle Scholar
  54. Saha, B.: Phys. Rev. D 74, 124030 (2006c) CrossRefADSMathSciNetGoogle Scholar
  55. Saha, B.: Rom. Rep. Phys. 59, 649 (2007) Google Scholar
  56. Saha, B.: Cent. Eur. J. Phys. 8, 920 (2010a) Google Scholar
  57. Saha, B.: Rom. Rep. Phys. 62, 209 (2010b) Google Scholar
  58. Saha, B.: Astrophys. Space Sci. 331, 243 (2011) CrossRefADSzbMATHGoogle Scholar
  59. Saha, B.: Int. J. Theor. Phys. 51, 1812 (2012) CrossRefzbMATHGoogle Scholar
  60. Saha, B.: Int. J. Theor. Phys. 53, 1109 (2014) CrossRefzbMATHGoogle Scholar
  61. Saha, B., Boyadjiev, T.: Phys. Rev. D 69, 124010 (2004) CrossRefADSMathSciNetGoogle Scholar
  62. Saha, B., Shikin, G.N.: Gen. Relativ. Gravit. 29, 1099 (1997a) CrossRefADSzbMATHMathSciNetGoogle Scholar
  63. Saha, B., Shikin, G.N.: J. Math. Phys. 38, 5305 (1997b) CrossRefADSzbMATHMathSciNetGoogle Scholar
  64. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004) CrossRefADSGoogle Scholar
  65. Vignolo, S., Fabbri, L., Cianci, R.: J. Math. Phys. 52, 112502 (2011) CrossRefADSMathSciNetGoogle Scholar
  66. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972) Google Scholar
  67. Weller, J., Albrecht, A.: Phys. Rev. D 65, 103512 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations