Astrophysics and Space Science

, Volume 356, Issue 1, pp 7–18 | Cite as

Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24

  • Partha ChowdhuryEmail author
  • D. P. Choudhary
  • S. Gosain
  • Y.-J. MoonEmail author
Original Article


In this paper we study the quasi-periodic variations of sunspot area/number, 10.7 cm solar radio flux, Average Photospheric Magnetic Flux, interplanetary magnetic field (B z ) and the geomagnetic activity index A p during the ascending phase of the current solar cycle 24. We use both Lomb-Scargle periodogram and wavelet analysis technique and find evidence for a multitude of quasi-periodic oscillations in all the data sets. In high frequency range (10 days to 100 days), both methods yield similar significance periodicities around 20–35 days and 45–60 days in all data sets. In the case of intermediate range, the significant periods were around 100–130 days, 140–170 days and 180–240 days The Morlet wavelet power spectrum shows that all of the above-mentioned periods are intermittent in nature. We find that the well-known “Rieger period” of (150–160 days) and near Rieger periods (130–190 days) were significant in both solar, interplanetary magnetic field and geomagnetic activity data sets during cycle 24. The geomagnetic activity is the result of the solar wind-magnetosphere interaction. Thus the variations in the detected periodicity in variety of solar, interplanetary and geomagnetic indices could be helpful to improve our knowledge of the inter-relationship between various processes in the Sun-Earth-Heliosphere system.


Sun: activities Sun: magnetic field Sun: sunspots Sun: geomagnetic activities Sun: periodicities 



This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Wavelet software provided by C. Torrence and G. Compo is also gratefully acknowledged.

This work was supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.


  1. Ahluwalia, H.S., Ygbuhay, R.C.: Status of galactic cosmic ray recovery from sunspot cycle 23 modulation. In: Twelfth International Solar Wind Conference. AIP Conference Proceedings, vol. 1216, pp. 699–702 (2010) Google Scholar
  2. Ataç, T., Özgüç, A., Rybak, J.: Periodicities in irradiance and in other solar activity indices during cycle 23. Sol. Phys. 237(2), 433–444 (2006) CrossRefADSGoogle Scholar
  3. Bai, T.: Periodicities of the flare occurrence rate in solar cycle 19. Astrophys. J. 318, L85–L91 (1987). Part 2. Letters to the Editor. ISSN 0004-637X. CrossRefADSGoogle Scholar
  4. Bai, T.: The 77 day periodicity in the flare rate of cycle 22. Astrophys. J. 388, L69–L72 (1992). Part 2. Letters. ISSN 0004-637X CrossRefADSGoogle Scholar
  5. Bai, T.: Periodicities in solar flare occurrence: analysis of cycles 19–23. Astrophys. J. 591(1), 406–415 (2003) CrossRefADSGoogle Scholar
  6. Bai, T., Sturrock, P.A.: The 152-day periodicity of the solar flare occurrence rate. Nature 327, 601–604 (1987). ISSN 0028-0836 CrossRefADSGoogle Scholar
  7. Bai, T., Sturrock, P.A.: The 154-day and related periodicities of solar activity as subharmonics of a fundamental period. Nature 350, 141–143 (1991). ISSN 0028-0836 CrossRefADSGoogle Scholar
  8. Bai, T., Sturrock, P.A.: Evidence for a fundamental period of the Sun and its relation to the 154 day complex of periodicities. Astrophys. J. 409(1), 476–486 (1993). Part 1. ISSN 0004-637X CrossRefADSGoogle Scholar
  9. Ballester, J.L., Oliver, R., Carbonell, M.: The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566(1), 505–511 (2002) CrossRefADSGoogle Scholar
  10. Ballester, J.L., Oliver, R., Carbonell, M.: Return of the near 160 day periodicity in the photospheric magnetic flux during solar cycle 23. Astrophys. J. 615(2), L173–L176 (2004) CrossRefADSGoogle Scholar
  11. Bogart, R.S., Bai, T.: Confirmation of a 152 day periodicity in the occurrence of solar flares inferred from microwave data. Astrophys. J. 299, L51–L55 (1985). Part 2. Letters to the Editor. ISSN 0004-637X CrossRefADSGoogle Scholar
  12. Bouwer, S.D.: Periodicities of solar irradiance and solar activity indices. II. Sol. Phys. 142(2), 365–389 (1992). ISSN 0038-0938 CrossRefADSGoogle Scholar
  13. Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24), 4437–4440 (1998) CrossRefADSGoogle Scholar
  14. Carbonell, M., Ballester, J.L.: A short-term periodicity near 155 day in sunspot areas. Astron. Astrophys. 238(1–2), 377–381 (1990). ISSN 0004-6361 ADSGoogle Scholar
  15. Choudhary, D.P., Lawrence, J.K., Norris, M., Cadavid, A.C.: Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in solar cycle 23–24. Sol. Phys. 289(2), 649–656 (2014) CrossRefADSGoogle Scholar
  16. Chowdhury, P., Dwivedi, B.N.: Periodicities of sunspot number and coronal index time series during solar cycle 23. Sol. Phys. 270(1), 365–383 (2011) CrossRefADSGoogle Scholar
  17. Chowdhury, P., Khan, M., Ray, P.C.: Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. R. Astron. Soc. 392(3), 1159–1180 (2009) CrossRefADSGoogle Scholar
  18. Chowdhury, P., Choudhary, D.P., Gosain, S.: A study of the hemispheric asymmetry of sunspot area during solar cycles 23 and 24. Astrophys. J. 768(2), 188 (2013a), 10 pp. CrossRefADSGoogle Scholar
  19. Chowdhury, P., Jain, R., Awasthi, A.K.: Periodicities in the X-ray emission from the solar corona. Astrophys. J. 778(1), 28 (2013b), 9 pp. CrossRefADSGoogle Scholar
  20. Chowdhury, P., Kudela, K., Dwivedi, B.N.: Heliospheric modulation of galactic cosmic rays during solar cycle 23. Sol. Phys. 286(2), 577–591 (2013c) CrossRefADSGoogle Scholar
  21. Chumak, O., Obridko, V., Zhang, H., Ai, G., Utrobin, V., Krasotkin, S.: Integral properties of solar active regions. Astron. Astrophys. Trans. 22(3), 335–355 (2003) CrossRefADSGoogle Scholar
  22. Dabas, R.S., Sharma, K., Das, R.M., Pillai, K.G.M., Chopra, P., Sethi, N.K.: A prediction of solar cycle 24 using a modified precursor method. Sol. Phys. 250(1), 171–181 (2008) CrossRefADSGoogle Scholar
  23. Dennis, B.R.: Solar hard X-ray bursts. Sol. Phys. 100, 465–490 (1985). ISSN 0038-0938 CrossRefADSGoogle Scholar
  24. Dikpati, M., de Toma, G., Gilman, P.A., Arge, C.N., White, O.R.: Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601(2), 1136–1151 (2004) CrossRefADSGoogle Scholar
  25. Dimitropoulou, M., Moussas, X., Strintzi, D.: Enhanced Rieger-type periodicities’ detection in X-ray solar flares and statistical validation of Rossby waves’ existence. Mon. Not. R. Astron. Soc. 386(4), 2278–2284 (2008) CrossRefADSGoogle Scholar
  26. Donnelly, R.F., Puga, L.C.: Thirteen-day periodicity and the center-to-limb dependence of UV, EUV, and X-ray emission of solar activity. Sol. Phys. 130, 369–390 (1990). ISSN 0038-0938 CrossRefADSGoogle Scholar
  27. Gil, A., Alania, M.V.: Cycling changes in the amplitudes of the 27-day variation of the galactic cosmic ray intensity. Sol. Phys. 278(2), 447–455 (2012) CrossRefADSGoogle Scholar
  28. Gilman, P.A., Dikpati, M., Miesch, M.S.: Global MHD instabilities in a three-dimensional thin-shell model of solar tachocline. Astrophys. J. Suppl. Ser. 170(1), 203–227 (2007) CrossRefADSGoogle Scholar
  29. Hathaway, D.H.: The solar cycle. Living Rev. Sol. Phys. 7(1), 1–65 (2010) ADSGoogle Scholar
  30. Hill, M.E., Hamilton, D.C., Krimigis, S.M.: Periodicity of 151 days in outer heliospheric anomalous cosmic ray fluxes. J. Geophys. Res. 106(A5), 8315–8322 (2001) CrossRefADSGoogle Scholar
  31. Horne, J.H., Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757–763 (1986). Part 1. ISSN 0004-637X CrossRefADSGoogle Scholar
  32. Howard, R.: Magnetic field rotation at high solar latitudes. Sol. Phys. 59, 243–248 (1978) CrossRefADSGoogle Scholar
  33. Kilcik, A., Özgüç, A., Rozelot, J.P., Ataç, T.: Periodicities in solar flare index for cycles 21–23 revisited. Sol. Phys. 264(1), 255–268 (2010) CrossRefADSGoogle Scholar
  34. Kile, J.N., Cliver, E.W.: A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955–1990. Astrophys. J. 370, 442–448 (1991). Part 1. ISSN 0004-637X CrossRefADSGoogle Scholar
  35. Kiliç, H.: Midrange periodicities in sunspot numbers and flare index during solar cycle 23. Astron. Astrophys. 481(1), 235–238 (2008) CrossRefADSGoogle Scholar
  36. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21–23. Periodicities, north-south asymmetries and r-mode signatures. Astron. Astrophys. 438(3), 1067–1082 (2005) CrossRefADSGoogle Scholar
  37. Krivova, N.A., Solanki, S.K.: The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701–706 (2002) CrossRefADSGoogle Scholar
  38. Krivova, N.A., Balmaceda, L., Solanki, S.K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467(1), 335–346 (2007) CrossRefADSGoogle Scholar
  39. Kudela, K., Ananth, A.G., Venkatesan, D.: The low-frequency spectral behavior of cosmic ray intensity. J. Geophys. Res. 96, 15871–15875 (1991) ISSN 0148-0227 CrossRefADSGoogle Scholar
  40. Kudela, K., Rybák, J., Antalová, A., Storini, M.: Time evolution of low-frequency periodicities in cosmic ray intensity. Sol. Phys. 205(1), 165–175 (2002) CrossRefADSGoogle Scholar
  41. Kudela, K., Mavromichalaki, H., Papaioannou, A., Gerontidou, M.: On mid-term periodicities in cosmic rays. Sol. Phys. 266(1), 173–180 (2010) CrossRefADSGoogle Scholar
  42. Lara, A., Borgazzi, A., Mendes, O. Jr., Rosa, R.R., Domingues, M.O.: Short-period fluctuations in coronal mass ejection activity during solar cycle 23. Sol. Phys. 248(1), 155–166 (2008) CrossRefADSGoogle Scholar
  43. Lean, J.: Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21. Astrophys. J. 363, 718–727 (1990). Part 1. ISSN 0004-637X CrossRefADSGoogle Scholar
  44. Livingston, W.: Sunspots observed to physically weaken in 2000–2001. Sol. Phys. 207(1), 41–45 (2002) CrossRefADSGoogle Scholar
  45. Lobzin, V.V., Cairns, I.H., Robinson, P.A.: Rieger-type periodicity in the occurrence of solar type III radio bursts. Astrophys. J. Lett. 754(2), L28 (2012), 5 pp. CrossRefADSGoogle Scholar
  46. Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976) CrossRefADSGoogle Scholar
  47. Lou, Y.-Q.: Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540(2), 1102–1108 (2000) CrossRefADSGoogle Scholar
  48. Lou, Y.-Q., Wang, Y.-M., Fan, Z., Wang, S., Wang, J.X.: Periodicities in solar coronal mass ejections. Mon. Not. R. Astron. Soc. 345(3), 809–818 (2003) CrossRefADSGoogle Scholar
  49. Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J.: Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953–1996. Ann. Geophys. 21(8), 1681–1689 (2003a) CrossRefADSGoogle Scholar
  50. Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Vassilaki, A., Tsagouri, I.: Time evolution of cosmic-ray intensity and solar flare index at the maximum phase of cycles 21 and 22. J. Atmos. Sol.-Terr. Phys. 65(9), 1021–1033 (2003b) CrossRefADSGoogle Scholar
  51. Mewaldt, R.A., et al.: Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723(1), L1–L6 (2010) CrossRefADSGoogle Scholar
  52. Mursula, K., Zieger, B.: The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: the last three solar cycles. J. Geophys. Res. 101(A12), 27077–27090 (1996) CrossRefADSGoogle Scholar
  53. Oliver, R., Ballester, J.L.: Short-term periodicities in sunspot areas during solar cycle 22. Sol. Phys. 156(1), 145–155 (1995). ISSN 0038-0938 CrossRefADSGoogle Scholar
  54. Oliver, R., Ballester, J.L., Baudin, F.: Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature 394(6693), 552–553 (1998) CrossRefADSGoogle Scholar
  55. Ozguc, A., Atac, T.: The 73-day periodicity of the flare index during the current solar cycle 22. Sol. Phys. 150(1–2), 339–346 (1994) CrossRefADSGoogle Scholar
  56. Pap, J., Bouwer, S.D., David, S., Tobiska, W.K.: Periodicities of solar irradiance and solar activity indices. Sol. Phys. 129, 165–189 (1990). ISSN 0038-0938 CrossRefADSGoogle Scholar
  57. Penn, M.J., Livingston, W.: Temporal changes in sunspot umbral magnetic fields and temperatures. Astrophys. J. 649(1), L45–L48 (2006) CrossRefADSGoogle Scholar
  58. Penn, M.J., Livingston, W.: Long-term evolution of sunspot magnetic fields. In: The Physics of Sun and Star Spots, Proceedings of the International Astronomical Union. IAU Symposium, vol. 273, pp. 126–133 (2011) Google Scholar
  59. Pesnell, W.D.: Predictions of solar cycle 24. Sol. Phys. 252(1), 209–220 (2008) CrossRefADSGoogle Scholar
  60. Pesnell, W.D.: Predicting solar cycle 24 using a geomagnetic precursor pair. Sol. Phys. 289(6), 2317–2331 (2014) CrossRefADSGoogle Scholar
  61. Pesnell, W.D.: Solar cycle predictions (invited review). Sol. Phys. 281(1), 507–532 (2012) ADSGoogle Scholar
  62. Prabhakaran Nayar, S.R., Radhika, V.N., Revathy, K., Ramadas, V.: Wavelet analysis of solar, solar wind and geomagnetic parameters. Sol. Phys. 208(2), 359–373 (2002) CrossRefADSGoogle Scholar
  63. Press, W.H., Teukolsky, S.A.: Numerical Recipes in C, pp. 575–583. Cambridge University Press, Cambridge (2001) Google Scholar
  64. Pulkkinen, T.: Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4(1), 1–60 (2007) ADSGoogle Scholar
  65. Rezaei, R., Beck, C., Schmidt, W.: Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter. Astron. Astrophys. 541, A60 (2012), 9 pp. CrossRefADSGoogle Scholar
  66. Richardson, I.G.: Geomagnetic activity during the rising phase of solar cycle 24. J. Space Weather Space Clim. 3, A08 (2013), 11 pp. CrossRefGoogle Scholar
  67. Richardson, I.G., Cane, H.V.: The ∼150 day quasi-periodicity in interplanetary and solar phenomena during cycle 23. Geophys. Res. Lett. 32(2), L02104 (2005) ADSGoogle Scholar
  68. Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623–625 (1984). ISSN 0028-0836 CrossRefADSGoogle Scholar
  69. Sabbah, I., Kudela, K.: Third harmonic of the 27 day periodicity of galactic cosmic rays: Coupling with interplanetary parameters. J. Geophys. Res. 116(A4), A04103 (2011) CrossRefADSGoogle Scholar
  70. Scargle, J.D.: Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982). Part 1 CrossRefADSGoogle Scholar
  71. Schad, T.A.: On the collective magnetic field strength and vector structure of dark umbral cores measured by the Hinode spectropolarimeter. Sol. Phys. 1477–1498 (2013) Google Scholar
  72. Singh, Y.P., Badruddin: Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity: wavelet analysis. Planet. Space Sci. 96, 120–124 (2014) CrossRefADSGoogle Scholar
  73. Singh, Y.P., Gautam, S., Badruddin: Temporal variations of short- and mid-term periodicities in solar wind parameters and cosmic ray intensity. J. Atmos. Sol.-Terr. Phys. 89, 48–53 (2012) CrossRefADSGoogle Scholar
  74. Solanki, S.K., Krivova, N.A., Haigh, J.D.: Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51(1), 311–351 (2013) CrossRefADSGoogle Scholar
  75. Sturrock, P.A., Scargle, J.D., Walther, G., Wheatland, M.S.: Rotational signature and possible R-mode signature in the GALLEX solar neutrino data. Astrophys. J. 523(2), L177–L180 (1999) CrossRefADSGoogle Scholar
  76. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998) CrossRefADSGoogle Scholar
  77. Ye, N., Zhu, F.R., Zhou, X.M., Jia, H.Y.: Short-term periodicity in solar mean magnetic field during activity maximum and minimum periods. Sol. Phys. 279(2), 411–418 (2012) CrossRefADSGoogle Scholar
  78. Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2), 749–758 (2010) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of CalcuttaKolkataIndia
  2. 2.School of Space ResearchKyung Hee UniversityYonginSouth Korea
  3. 3.Department of Physics and AstronomyCalifornia State University NorthridgeNorthridgeUSA
  4. 4.National solar ObservatoryTuscanUSA

Personalised recommendations