Astrophysics and Space Science

, Volume 354, Issue 2, pp 275–299 | Cite as

Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques

  • Nicola ScafettaEmail author
Original Article


During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations. Also the Earth’s climate seems to present a signature of multiple astronomical harmonics. Herein I address some critiques claiming that planetary harmonics would not appear in the data. I will show that careful and improved analysis of the available data do support the planetary theory of solar and climate variation also in the critiqued cases. In particular, I show that: (1) high-resolution cosmogenic 10Be and 14C solar activity proxy records both during the Holocene and during the Marine Interglacial Stage 9.3 (MIS 9.3), 325–336 kyear ago, present four common spectral peaks (confidence level ⪆95 %) at about 103, 115, 130 and 150 years (this is the frequency band that generates Maunder and Dalton like grand solar minima) that can be deduced from a simple solar model based on a generic non-linear coupling between planetary and solar harmonics; (2) time-frequency analysis and advanced minimum variance distortion-less response (MVDR) magnitude squared coherence analysis confirm the existence of persistent astronomical harmonics in the climate records at the decadal and multidecadal scales when used with an appropriate window lenght (L≈110 years) to guarantee a sufficient spectral resolution to solve at least the major astronomical harmonics. The optimum theoretical window length deducible from astronomical considerations alone is, however, L⪆178.4 years because the planetary frequencies are harmonics of such a period. However, this length is larger than the available 164-year temperature signal. Thus, the best coherence test can be currently made only using a single window as long as the temperature instrumental record and comparing directly the temperature and astronomical spectra as done in Scafetta (J. Atmos. Sol. Terr. Phys. 72(13):951–970, 2010) and reconfirmed here. The existence of a spectral coherence between planetary, solar and climatic oscillations is confirmed at the following periods: 5.2 year, 5.93 year, 6.62 year, 7.42 year, 9.1 year (main lunar tidal cycle), 10.4 year (related to the 9.93–10.87–11.86 year solar cycle harmonics), 13.8-15.0 year, ∼20 year, ∼30 year and ∼61 year, 103 year, 115 year, 130 year, 150 year and about 1000 year. This work responds to the critiques of Cauquoin et al. (Astron. Astrophys. 561:A132, 2014), who ignored alternative planetary theories of solar variations, and of Holm (J. Atmos. Sol. Terr. Phys. 110–111:23–27, 2014a), who used inadequate physical and time frequency analyses of the data.


Solar oscillations Planetary oscillations Synchronization Spectral analysis 


  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88 (2012) ADSCrossRefGoogle Scholar
  2. Agnihotri, R., Dutta, K.: Centennial scale variations in monsoonal rainfall (Indian, East equatorial and Chinese monsoons): manifestations of solar variability. Curr. Sci. 85, 459–463 (2003) Google Scholar
  3. Bard, E., Raisbeck, G., Yiou, F., Jouzel, J.: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B, 985–992 (2000) ADSCrossRefGoogle Scholar
  4. Benesty, J., Chen, J., Huang, Y.: Estimation of the coherence function with the MVDR approach. In: Acoustics, Speech and Signal Processing. ICASSP 2006 Proceedings, vol. 3, pp. 500–503 (2006). doi: 10.1109/ICASSP.2006.1660700. Google Scholar
  5. Bennett, J., Donahue, M., Schneider, N., Voit, M.: The Cosmic Perspective, 7th edn. Pearson Education, San Francisco (2014) Google Scholar
  6. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001) ADSCrossRefGoogle Scholar
  7. Brohan, P., Kennedy, J.J., Harris, I., Tett, S.F.B., Jones, P.D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106 (2006). doi: 10.1029/2005JD006548 ADSCrossRefGoogle Scholar
  8. Callebaut, D.K., de Jager, C., Duhau, S.: The influence of planetary attractions on the solar tachocline. J. Atmos. Sol.-Terr. Phys. 80, 73–78 (2012) ADSCrossRefGoogle Scholar
  9. Cauquoin, A., Raisbeck, G.M., Jouzel, J., Bard, E. (ASTER Team): No evidence for planetary influence on solar activity 330 000 years ago. Astron. Astrophys. 561, A132 (2014) CrossRefGoogle Scholar
  10. Charvátová, I.: Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045. New Astron. 14, 25–30 (2009) ADSCrossRefGoogle Scholar
  11. Christiansen, B., Ljungqvist, F.C.: The extra-tropical northern hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim. Past 8, 765–786 (2012) CrossRefGoogle Scholar
  12. Chylek, P., Folland, C.K., Dijkstra, H.A., Lesins, G., Dubey, M.K.: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 38, L13704 (2011) ADSCrossRefGoogle Scholar
  13. Copernicus, N.: De Revolutionibus Orbium Coelestium. Johannes Petreius (1543) Google Scholar
  14. Davis, J.C., Bohling, G.: The search for patterns in ice-core temperature curves. In: Gerhard, L.C., Harrison, W.E., Hanson, B.M. (eds.) Geological Perspectives of Global Climate Change, pp. 213–229 (2001) Google Scholar
  15. Fairbridge, R.W., Shirley, J.H.: Prolonged minima and the 179-year cycle of the solar inertial motion. Sol. Phys. 10, 191–210 (1987) ADSCrossRefGoogle Scholar
  16. Geddes, A.B., King-Hele, D.G.: Equations for mirror symmetries among the distances of the planets. Q. J. R. Astron. Soc. 24, 10–13 (1983) ADSGoogle Scholar
  17. Ghil, M., Allen, R.M., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.1–3.41 (2002) (SSA-MTM tool kit for spectral analysis) CrossRefGoogle Scholar
  18. Goldreich, P., Peale, S.J.: Resonant rotation for Venus? Nature 209, 1117–1118 (1966) ADSCrossRefGoogle Scholar
  19. Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004) ADSCrossRefGoogle Scholar
  20. Holm, S.: On the alleged coherence between the global temperature and the Sun’s movement. J. Atmos. Sol.-Terr. Phys. 110–111, 23–27 (2014a) CrossRefGoogle Scholar
  21. Holm, S.: Corrigendum to “On the alleged coherence between the global temperature and the sun’s movement”. J. Atmos. Sol.-Terr. Phys. 119, 230–231 (2014b). arXiv:1307.1086 [v3, Wed, 23 Apr 2014 13:14:40 GMT] ADSCrossRefGoogle Scholar
  22. Hoyt, D.V., Schatten, K.H.: The Role of the Sun in the Climate Change. Oxford Univ. Press, New York (1997) Google Scholar
  23. Hung, C.-C.: Apparent relations between solar activity and solar tides caused by the planets. NASA report/TM-2007-214817 (2007). Available at
  24. Iyengar, R.N.: Monsoon rainfall cycles as depicted in ancient Sanskrit texts. Curr. Sci. 97, 444–447 (2009) Google Scholar
  25. Jakubcová, I., Pick, M.: The planetary system and solar-terrestrial phenomena. Stud. Geophys. Geod. 30, 224–235 (1986) ADSCrossRefGoogle Scholar
  26. Jevrejeva, S., Moore, J.C., Grinsted, A., Woodworth, P.: Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 35, L08715 (2008) ADSCrossRefGoogle Scholar
  27. Jose, P.D.: Sun’s motion and sunspots. Astron. J. 70, 193–200 (1965) ADSCrossRefGoogle Scholar
  28. Kepler, J.: Mysterium Cosmographicum (The Cosmographic Mystery) (1596) Google Scholar
  29. Kepler, J.: De Stella Nova in Pede Serpentarii (On the new star in Ophiuchus’s foot) (1606) Google Scholar
  30. Kerr, R.A.: A variable sun paces millennial climate. Science 294, 1431–1433 (2001) CrossRefGoogle Scholar
  31. Klyashtorin, L.B., Borisov, V., Lyubushin, A.: Cyclic changes of climate and major commercial stocks of the Barents Sea. Marine Biol. Res. 5, 4–17 (2009) CrossRefGoogle Scholar
  32. Knudsen, M.F., Seidenkrantz, M.-S., Jacobsen, B.H., Kuijpers, A.: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun. 2, 178 (2011) CrossRefGoogle Scholar
  33. Loehle, C., Scafetta, N.: Climate change attribution using empirical decomposition of climatic data. Open Atmos. Sci. J. 5, 74–86 (2011) CrossRefGoogle Scholar
  34. Manzi, V., Gennari, R., Lugli, S., Roveri, M., Scafetta, N., Schreiber, C.: High-frequency cyclicity in the Mediterranean Messinian evaporites: evidence for solar-lunar climate forcing. J. Sediment. Res. 82, 991–1005 (2012) ADSCrossRefGoogle Scholar
  35. Ma’sar, A.: In: Yamamoto, K., Burnett, C. (eds.) On Historical Astrology—The Book of Religions and Dynasties (On the Great Conjunctions). Brill, Leiden (2000) Google Scholar
  36. Mazzarella, A., Scafetta, N.: Evidences for a quasi 60-year North Atlantic oscillation since 1700 and its meaning for global climate change. Theor. Appl. Climatol. 107(3–4), 599–609 (2012) ADSCrossRefGoogle Scholar
  37. McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Sol. Phys. 286(2), 609–627 (2013) ADSCrossRefGoogle Scholar
  38. McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys. 286(2), 609–627 (2014). doi: 10.1007/s11207-014-0510-1 ADSCrossRefGoogle Scholar
  39. Molchanov, A.M.: The resonant structure of the solar system: the law of planetary distances. Icarus 8, 203–215 (1968) ADSCrossRefGoogle Scholar
  40. Molchanov, A.M.: The reality of resonances in the solar system. Icarus 11, 104–110 (1969a) ADSCrossRefGoogle Scholar
  41. Molchanov, A.M.: Resonances in complex systems: a reply to critiques. Icarus 11, 95–103 (1969b) ADSCrossRefGoogle Scholar
  42. Mörner, N.-A., Tattersall, R., Solheim, J.-E.: Preface: pattern in solar variability, their planetary origin and terrestrial impacts. Pattern Recogn. Phys. 1, 203–204 (2013). doi: 10.5194/prp-1-203-2013, ADSCrossRefGoogle Scholar
  43. Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Sol. Phys. 211, 371–394 (2002) ADSCrossRefGoogle Scholar
  44. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, a Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001) CrossRefzbMATHGoogle Scholar
  45. Poluianov, A., Usoskin, I.: Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Sol. Phys. 289, 2333–2342 (2014) ADSCrossRefGoogle Scholar
  46. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  47. Puetz, S.J., Prokoph, A., Borchardt, G., Mason, E.W.: Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63, 55–75 (2014) MathSciNetCrossRefGoogle Scholar
  48. Pustil’nik, L.A., Din, G.Y.: Influence of solar activity on the state of the wheat market in medieval. England. Sol. Phys. 223, 335–356 (2004) ADSCrossRefGoogle Scholar
  49. Qian, W.-H., Lu, B.: Periodic oscillations in millennial global-mean temperature and their causes. Chin. Sci. Bull. 55, 4052–4057 (2010) CrossRefGoogle Scholar
  50. Salvador, R.J.: A mathematical model of the sunspot cycle for the past 1000 year. Pattern Recogn. Phys. 1, 117–122 (2013) ADSCrossRefGoogle Scholar
  51. Scafetta, N.: Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol.-Terr. Phys. 72(13), 951–970 (2010) ADSCrossRefGoogle Scholar
  52. Scafetta, N.: A shared frequency set between the historical mid-latitude aurora records and the global surface temperature. J. Atmos. Sol.-Terr. Phys. 74, 145–163 (2012a) ADSCrossRefGoogle Scholar
  53. Scafetta, N.: Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC 2007, general circulation climate models. J. Atmos. Sol.-Terr. Phys. 80, 124–137 (2012b) ADSCrossRefGoogle Scholar
  54. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter–Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.-Terr. Phys. 80, 296–311 (2012c) ADSCrossRefGoogle Scholar
  55. Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81–82, 27–40 (2012d) CrossRefGoogle Scholar
  56. Scafetta, N.: Solar and planetary oscillation control on climate change: hind-cast, forecast and a comparison with the CMIP5 GCMs. Energy Environ. Sci. 24(3–4), 455–496 (2013a) Google Scholar
  57. Scafetta, N.: Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321–357 (2013b) ADSCrossRefGoogle Scholar
  58. Scafetta, N.: The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1–19 (2014). doi: 10.5194/prp-2-1-2014 ADSCrossRefGoogle Scholar
  59. Scafetta, N., Willson, R.C.: Planetary harmonics in the historical Hungarian aurora record (1523–1960). Planet. Space Sci. 78, 38–44 (2013a) ADSCrossRefGoogle Scholar
  60. Scafetta, N., Willson, R.C.: Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth–Jupiter conjunction cycle. Astrophys. Space Sci. 348(1), 25–39 (2013b) ADSCrossRefGoogle Scholar
  61. Scafetta, N., Willson, R.C.: ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 350(2), 421–442 (2014) ADSCrossRefGoogle Scholar
  62. Scafetta, N., Humlum, O., Solheim, J.-E., Stordahl, K.: Comment on “The influence of planetary attractions on the solar tachocline” by Callebaut, de Jager and Duhau. J. Atmos. Sol.-Terr. Phys. 102, 368–371 (2013) ADSCrossRefGoogle Scholar
  63. Scharf, C.A.: Possible constraints on exoplanet magnetic field strengths from planet–star interaction. Astrophys. J. 722, 1547–1555 (2010) ADSCrossRefGoogle Scholar
  64. Schulz, M., Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002) ADSCrossRefGoogle Scholar
  65. Sharp, G.J.: Are Uranus & Neptune responsible for solar grand minima and solar cycle modulation? Int. J. Astron. Astrophys. 3, 260–273 (2013) CrossRefGoogle Scholar
  66. Shirley, J.H., Sperber, K.R., Fairbridge, R.W.: Sun’s internal motion and luminosity. Sol. Phys. 127, 379–392 (1990) ADSCrossRefGoogle Scholar
  67. Shkolnik, E., Walker, G.A.H., Bohlender, D.A.: Evidence for planet-induced chromospheric activity on HD 179949. Astrophys. J. 597, 1092–1096 (2003) ADSCrossRefGoogle Scholar
  68. Shkolnik, E., Walker, G.A.H., Bohlender, D.A., Gu, P.-G., Kurster, M.: Hot jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. Astrophys. J. 622, 1075–1090 (2005) ADSCrossRefGoogle Scholar
  69. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkila, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109(16), 5967–5971 (2012) ADSCrossRefGoogle Scholar
  70. Tan, B., Cheng, Z.: The mid-term and long-term solar quasiperiodic cycles and the possible relationship with planetary motions. Astrophys. Space Sci. 343, 511–521 (2013) ADSCrossRefGoogle Scholar
  71. Tattersall, R.: The hum: log-normal distribution and planetary–solar resonance. Pattern Recogn. Phys. 1, 185–198 (2013). doi: 10.5194/prp-1-185-2013 ADSCrossRefGoogle Scholar
  72. Temple, R.: The Sirius Mystery (Destiny Books), Appendix 3, “Why Sixty Years?” (1998).
  73. Thejll, P., Lassen, K.: Solar forcing of the northern hemisphere land air temperature: new data. J. Atmos. Sol.-Terr. Phys. 62, 1207–1213 (2000) ADSCrossRefGoogle Scholar
  74. Titius, J.D.: Betrachtung über die Natur, vom Herrn Karl Bonnet, pp. 7–8, Leipzig (1766). Transl. by Jaki, S., in: The early history of the Titius-Bode Law. Am. J. Phys. 40, 1014–1023 (1972) Google Scholar
  75. Wang, Z., Wu, D., Song, X., Chen, X., Nicholls, S.: Sun–Moon gravitation-induced wave characteristics and climate variation. J. Geophys. Res. 117, D07102 (2012) ADSGoogle Scholar
  76. Wigley, T.M.L.: The climate of the past 10,000 years and the role 366 of the Sun. In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 367 10,000 Years, pp. 209–224. Springer, New York (1988) CrossRefGoogle Scholar
  77. Wilson, I.R.G.: The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147–158 (2013) ADSCrossRefGoogle Scholar
  78. Wolf, R.: Extract of a letter to Mr. Carrington. Mon. Not. R. Astron. Soc. 19, 85–86 (1859) ADSCrossRefGoogle Scholar
  79. Wolff, C.L., Patrone, P.N.: A new way that planets can affect the Sun. Sol. Phys. 266, 227–246 (2010) ADSCrossRefGoogle Scholar
  80. Wright, J.T., Marcy, G.W., Butler, R.P., Vogt, S.S., Henry, G.W., Isaacson, H., Howard, A.W.: The Jupiter twin HD 154345b. Astrophys. J. 683(1), L63–L66 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Meteorological Observatory, Department of Earth Sciences, Environment and GeoresourcesUniversity of Naples Federico IINaplesItaly
  2. 2.Active Cavity Radiometer Irradiance Monitor (ACRIM) LabCoronadoUSA
  3. 3.Duke UniversityDurhamUSA

Personalised recommendations