Astrophysics and Space Science

, Volume 352, Issue 2, pp 409–419 | Cite as

Large retrograde Centaurs: visitors from the Oort cloud?

  • C. de la Fuente MarcosEmail author
  • R. de la Fuente Marcos
Original Article


Among all the asteroid dynamical groups, Centaurs have the highest fraction of objects moving in retrograde orbits. The distribution in absolute magnitude, H, of known retrograde Centaurs with semi-major axes in the range 6–34 AU exhibits a remarkable trend: 10 % have H<10 mag, the rest have H>12 mag. The largest objects, namely (342842) 2008 YB3, 2011 MM4 and 2013 LU28, move in almost polar, very eccentric paths; their nodal points are currently located near perihelion and aphelion. In the group of retrograde Centaurs, they are obvious outliers both in terms of dynamics and size. Here, we show that these objects are also trapped in retrograde resonances that make them unstable. Asteroid 2013 LU28, the largest, is a candidate transient co-orbital to Uranus and it may be a recent visitor from the trans-Neptunian region. Asteroids 342842 and 2011 MM4 are temporarily submitted to various high-order retrograde resonances with the Jovian planets but 342842 may be ejected towards the trans-Neptunian region within the next few hundred kyr. Asteroid 2011 MM4 is far more stable. Our analysis shows that the large retrograde Centaurs form an heterogeneous group that may include objects from various sources. Asteroid 2011 MM4 could be a visitor from the Oort cloud but an origin in a relatively stable closer reservoir cannot be ruled out. Minor bodies like 2011 MM4 may represent the remnants of the primordial planetesimals and signal the size threshold for catastrophic collisions in the early Solar System.


Celestial mechanics Minor planets, asteroids: general Minor planets, asteroids: individual: (342842) 2008 YB3 Minor planets, asteroids: individual: 2011 MM4 Minor planets, asteroids: individual: 2013 LU28 Planets and satellites: individual: Uranus 



We would like to thank S.J. Aarseth, H.F. Levison and M.J. Duncan for providing the codes used in this research, and the referee for his/her quick and helpful report. This work was partially supported by the Spanish ‘Comunidad de Madrid’ under grant CAM S2009/ESP-1496. We thank M.J. Fernández-Figueroa, M. Rego Fernández and the Department of Astrophysics of the Universidad Complutense de Madrid (UCM) for providing computing facilities. Most of the calculations and part of the data analysis were completed on the ‘Servidor Central de Cálculo’ of the UCM and we thank S. Cano Alsúa for his help during this stage. In preparation of this paper, we made use of the NASA Astrophysics Data System, the ASTRO-PH e-print server and the MPC data server.


  1. Aarseth, S.J.: Gravitational N-body simulations p. 27. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  2. Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., Gwyn, S.: Science 341, 994 (2013) ADSCrossRefGoogle Scholar
  3. Bauer, J.M., et al.: Astrophys. J. 773, 22 (2013) ADSCrossRefGoogle Scholar
  4. Belton, M.J.S.: Icarus 231, 168 (2014) ADSCrossRefGoogle Scholar
  5. Bernstein, G.M., Trilling, D.E., Allen, R.L., Brown, M.E., Holman, M., Malhotra, R.: Astron. J. 128, 1364 (2004) ADSCrossRefGoogle Scholar
  6. Brasser, R., Heggie, D.C., Mikkola, S.: Celest. Mech. Dyn. Astron. 88, 123 (2004) ADSCrossRefGoogle Scholar
  7. Brasser, R., Schwamb, M.E., Lykawka, P.S., Gomes, R.S.: Mon. Not. R. Astron. Soc. 420, 3396 (2012) ADSCrossRefGoogle Scholar
  8. Bressi, T.H., et al.: MPEC 2013-L69 (2013) Google Scholar
  9. Charnoz, S., Morbidelli, A.: Icarus 188, 468 (2007) ADSCrossRefGoogle Scholar
  10. de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 427, 728 (2012a) ADSCrossRefGoogle Scholar
  11. de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 427, L85 (2012b) ADSGoogle Scholar
  12. de la Fuente Marcos, C., de la Fuente Marcos, R.: Astron. Astrophys. 551, A114 (2013) CrossRefGoogle Scholar
  13. de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 441, 2280 (2014) ADSCrossRefGoogle Scholar
  14. Di Sisto, R.P., Brunini, A.: Icarus 190, 224 (2007) ADSCrossRefGoogle Scholar
  15. Di Sisto, R.P., Brunini, A., de Elía, G.C.: Astron. Astrophys. 519, A112 (2010) CrossRefGoogle Scholar
  16. Doolin, S., Blundell, K.M.: Mon. Not. R. Astron. Soc. 418, 2656 (2011) ADSCrossRefGoogle Scholar
  17. Duncan, M.J.: Space Sci. Rev. 138, 109 (2008) ADSCrossRefGoogle Scholar
  18. Emel’yanenko, V.V., Asher, D.J., Bailey, M.E.: Earth Moon Planets 110, 105 (2013) ADSCrossRefGoogle Scholar
  19. Farago, F., Laskar, J.: Mon. Not. R. Astron. Soc. 401, 1189 (2010) ADSCrossRefGoogle Scholar
  20. Fouchard, M., Rickman, H., Froeschlé, C., Valsecchi, G.B.: Icarus 231, 99 (2014) ADSCrossRefGoogle Scholar
  21. Fraser, W.C.: Astrophys. J. 706, 119 (2009) ADSCrossRefGoogle Scholar
  22. Fraser, W.C., Kavelaars, J.J.: Astron. J. 137, 72 (2009) ADSCrossRefGoogle Scholar
  23. Fraser, W.C., Brown, M.E., Morbidelli, A., Parker, A., Batygin, K.: Astrophys. J. 782, 100 (2014) ADSCrossRefGoogle Scholar
  24. Fuentes, C.I., Holman, M.J.: Astron. J. 136, 83 (2008) ADSCrossRefGoogle Scholar
  25. Gallardo, T.: Icarus 181, 205 (2006) ADSCrossRefGoogle Scholar
  26. Giorgini, J.D., et al.: Bull. Am. Astron. Soc. 28, 1158 (1996) ADSGoogle Scholar
  27. Gomes, R.S.: Icarus 215, 661 (2011) ADSCrossRefGoogle Scholar
  28. Horner, J., Lykawka, P.S.: Mon. Not. R. Astron. Soc. 402, 13 (2010) ADSCrossRefGoogle Scholar
  29. Horner, J., Evans, N.W., Bailey, M.E.: Mon. Not. R. Astron. Soc. 354, 798 (2004a) ADSCrossRefGoogle Scholar
  30. Horner, J., Evans, N.W., Bailey, M.E.: Mon. Not. R. Astron. Soc. 355, 321 (2004b) ADSCrossRefGoogle Scholar
  31. Kozai, Y.: Astron. J. 67, 591 (1962) ADSMathSciNetCrossRefGoogle Scholar
  32. Levison, H., Duncan, M.J.: Icarus 108, 18 (1994) ADSCrossRefGoogle Scholar
  33. Levison, H.F., Duncan, M.J.: Icarus 127, 13 (1997) ADSCrossRefGoogle Scholar
  34. Levison, H.F., Duncan, M.J., Dones, L., Gladman, B.J.: Icarus 184, 619 (2006) ADSCrossRefGoogle Scholar
  35. Makino, J.: Astrophys. J. 369, 200 (1991) ADSMathSciNetCrossRefGoogle Scholar
  36. McNaught, R.H., et al.: MPEC 2008-Y38 (2008) Google Scholar
  37. Morais, M.H.M., Namouni, F.: Celest. Mech. Dyn. Astron. 117, 405 (2013a) ADSCrossRefGoogle Scholar
  38. Morais, M.H.M., Namouni, F.: Mon. Not. R. Astron. Soc. 436, L30 (2013b) ADSCrossRefGoogle Scholar
  39. Pinilla-Alonso, N., et al.: Astron. Astrophys. 550, A13 (2013) CrossRefGoogle Scholar
  40. Robutel, P., Laskar, J.: Icarus 152, 4 (2001) ADSCrossRefGoogle Scholar
  41. Schlichting, H.E., Fuentes, C.I., Trilling, D.E.: Astron. J. 146, 36 (2013) ADSCrossRefGoogle Scholar
  42. Shankman, C., Gladman, B.J., Kaib, N., Kavelaars, J.J., Petit, J.M.: Astrophys. J. 764, L2 (2013) ADSCrossRefGoogle Scholar
  43. Sheppard, S.S.: Astron. J. 139, 1394 (2010) ADSCrossRefGoogle Scholar
  44. Standish, E.M.: JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memo. 312.F-98-048, Jet Propulsion Laboratory, Pasadena, CA, USA (1998) Google Scholar
  45. Trujillo, C.A., Sheppard, S.S.: Nature 507, 471 (2014) ADSCrossRefGoogle Scholar
  46. Verrier, P.E., Evans, N.W.: Mon. Not. R. Astron. Soc. 390, 1377 (2008) ADSGoogle Scholar
  47. Verrier, P.E., Evans, N.W.: Mon. Not. R. Astron. Soc. 394, 1721 (2009) ADSCrossRefGoogle Scholar
  48. Volk, K., Malhotra, R.: Icarus 224, 66 (2013) ADSCrossRefGoogle Scholar
  49. Woodworth, D., et al.: MPEC 2013-N02 (2011) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. de la Fuente Marcos
    • 1
    Email author
  • R. de la Fuente Marcos
    • 1
  1. 1.Universidad Complutense de MadridMadridSpain

Personalised recommendations