Astrophysics and Space Science

, Volume 352, Issue 2, pp 341–352 | Cite as

ACRIM3 and the Total Solar Irradiance database

  • Richard C. Willson
Original Article


The effects of scattering and diffraction on the observations of the ACRIMSAT/ACRIM3 satellite TSI monitoring mission have been characterized by the preflight calibration approach for satellite total solar irradiance (TSI) sensors implemented at the LASP/TRF (Laboratory for Atmospheric and Space Physics/Total Solar Irradiance Radiometer Facility). The TRF also calibrates the SI (International System of units) traceability to the NIST (National Institute of Standards and Technology) cryo-radiometric scale. ACRIM3’s self-calibration agrees with NIST to within the uncertainty of the test procedure (∼500 ppm). A correction of ∼5000 ppm was found for scattering and diffraction that has significantly reduced the scale difference between the results of the ACRIMSAT/ACRIM3 and SORCE/TIM satellite experiments. Algorithm updates reflecting more than 10 years of mission experience have been made that further improve the ACRIM3 results by eliminating some thermally driven signal and increasing the signal to noise ratio. The result of these changes is a more precise and detailed picture of TSI variability. Comparison of the results from the ACRIM3, SORCE/TIM and SOHO/VIRGO satellite experiments demonstrate the near identical detection of TSI variability on all sub-annual temporal and amplitude scales during the TIM mission. The largest occurs at the rotational period of the primary solar activity longitudes. On the decadal timescale, while ACRIM3 and VIRGO results exhibit close agreement throughout, TIM exhibits a consistent 500 ppm upward trend relative to ACRIM3 and VIRGO. A solar magnetic activity area proxy for TSI has been used to demonstrate that the ACRIM TSI composite and its +0.037 %/decade TSI trend during solar cycles 21–23 is the most likely correct representation of the extant satellite TSI database. The occurrence of this trend during the last decades of the 20th century supports a more robust contribution of TSI variation to detected global temperature increase during this period than predicted by current climate models.


Total Solar Irradiance SI Calibration Decadal Trends 


  1. Butler, J., et al.: Sources of differences in on-orbital total solar irradiance measurements and description of a proposed laboratory intercomparison. J. Res. Natl. Inst. Stand. Technol. 113, 187–203 (2008) CrossRefGoogle Scholar
  2. Datla, R.U., Stock, K., Parr, A.C., Hoyt, C.C., Miller, P.J., Foukal, P.V.: Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements. Appl Opt. 31(34), 7219–7225 (1992). doi: 10.1364/AO.31.007219 ADSCrossRefGoogle Scholar
  3. Eddy, J.A.: Climate and the changing sun. Clim. Change 1, 173–190 (1977) CrossRefGoogle Scholar
  4. Frohlich, C.: VIRGO radiometry. In: International Space Science Institute Proceedings (2013) Google Scholar
  5. Frohlich, C., Lean, J.: The Sun’s total irradiance: cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett. 25, 4377–4380 (1998) ADSCrossRefGoogle Scholar
  6. Frohlich, C., Lean, J.: Solar radiative output and its variability: evidence and mechanisms. Astron. Astrophys. Rev. (2004). doi: 10.1007/s00159-004-0024-1
  7. Frohlich, C., Crommelynck, D., Wehrli, C., Anklin, M., Dewitte, S., Fichot, A., Finsterle, W., Jiménez, A., Chevalier, A., Roth, H.J.: In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol. Phys. 162, 101–128 (1997) ADSCrossRefGoogle Scholar
  8. Hickey, J.R., et al.: Total solar irradiance measurements by ERB/Nimbus-7—A review of nine years. Space Sci. Rev. 48(3–4), 321–342 (1988). doi: 10.1007/BF00226011 ADSGoogle Scholar
  9. Houston, J.M., Rice, J.P.: NIST reference cryogenic radiometer designed for versatile performance. Metrologia 43(2), S31–S35 (2006). doi: 10.1088/0026-1394/43/2/S07 ADSCrossRefGoogle Scholar
  10. Hoyt, D.V., et al.: The Nimbus 7 solar total irradiance: a new algorithm for its derivation. J. Geophys. Res. 97(A1), 51–63 (1992) ADSCrossRefGoogle Scholar
  11. Kopp, G., Lean, J.L.: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706 (2011a). doi: 10.1029/2010GL045777 ADSCrossRefGoogle Scholar
  12. Kopp, G., Lean, J.L.: Uncertainties spanning potential SORCE/TIM to JPSS/TIM Gap (Study A), National Research Council. In: Review of NOAA Working Group Report on Maintaining the Continuation of Long-Term Satellite Total Irradiance Observations. The National Academies Press, Washington (2011b) Google Scholar
  13. Kopp, G., Lean, J.L.: The solar climate data record: scientific assessment of strategies to mitigate an impending gap in total solar irradiance observations between the NASA SORCE and NOAA TSIS Missions (Study B), National Research Council. In: Review of NOAA Working Group Report on Maintaining the Continuation of Long-Term Satellite Total Irradiance Observations. The National Academies Press, Washington (2013) Google Scholar
  14. Kopp, G., Heuerman, K., Lawrence, G.: The Total Irradiance Monitor (TIM): instrument calibration. Sol. Phys. 230, 111–127 (2005b) ADSCrossRefGoogle Scholar
  15. Kopp, G., Lawrence, G., Rottman, G.: The Total Irradiance Monitor (TIM): science results. Sol. Phys. 230(1), 129–140 (2005a) ADSCrossRefGoogle Scholar
  16. Kopp, G., Heuerman, K., Harber, D., Drake, V.: The TSI radiometer facility—absolute calibrations for total solar irradiance instruments. Proc. SPIE 6677, 667709 (2007). doi: 10.1117/12.734553 CrossRefGoogle Scholar
  17. Kopp, G., Fehlmann, A., Finsterle, W., Harber, D., Heuerman, K., Willson, R.: Total solar irradiance data record accuracy and consistency improvements. Metrologia 49, S29 (2012). doi: 10.1088/0026-1394/49/2/S29 ADSCrossRefGoogle Scholar
  18. Krivova, N.A., Balmaceda, L., Solanki, S.K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007) ADSCrossRefGoogle Scholar
  19. Lean, J., Beer, J., Bradley, R.: Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995) ADSCrossRefGoogle Scholar
  20. Lee, R.B. III, Gibson, M.A., Wilson, R.S., Thomas, S.: Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res.: Space Phys. 100(A2), 1667–1675 (1995). doi: 10.1029/94JA02897 ADSCrossRefGoogle Scholar
  21. Martin, J.E., Fox, N.P., Key, P.J.: A cryogenic radiometer for absolute radiometric measurements. Metrologia 21, 147 (1985). doi: 10.1088/0026-1394/21/3/007 ADSCrossRefGoogle Scholar
  22. Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E., Mekaoui, S.: SOVAP/PICARD, a spaceborne radiometer to measure the Total Solar Irradiance. Solar Phys. (2013) doi: 10.1007/s11207-013-0443-0
  23. Morrill, J., Socker, D., Thernisien1, A., McMullin, D., Shirley, E., Hanssen, L., Zeng, J., Lorentz, S.: Final Report—NRL Support of ACRIMSAT Mission Extension (NASA Grant NNH10AO22), Naval Research Laboratory, March 1, 2013 Google Scholar
  24. Scafetta, N., West, B.J.: Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J. Geophys. Res. 112, D24S03 (2007). doi: 10.1029/2007JD008437 ADSCrossRefGoogle Scholar
  25. Scafetta, N., Willson, R.C.: ACRIM Gap and Total Solar Irradiance (TSI) trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. 36, L05701 (2009). doi: 10.1029/2008GL036307 ADSCrossRefGoogle Scholar
  26. Scafetta, N., Willson, R.C.: Multiscale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its nonlinear dependence on the 11 yr solar cycle (2013). doi: 10.5194/prp-1-1-2013
  27. Scafetta, N., Willson, R.C.: Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth-Jupiter conjunction cycle. Astrophys. Space Sci. (2013). doi: 10.1007/s10509-013-1558-3
  28. Scafetta, N., Willson, R.C.: ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. (2014). doi: 10.1007/s10509-013-1775-9
  29. Schmutz, W., Fehlmann, A., Finsterle, W., Kopp, G., Thuillier, G.: Total solar irradiance measurements with PREMOS/PICARD. AIP Conf. Proc. 1531, 624 (2013). doi: 10.1063/1.4804847 ADSCrossRefGoogle Scholar
  30. Wenzler, T., Solanki, S.K., Krivova, N.A., Frohlich, C.: Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006) ADSCrossRefGoogle Scholar
  31. Wenzler, T., Solanki, S.K., Krivova, N.A.: Reconstructed and measured total solar irradiance: Is there a secular trend between 1978 and 2003? Geophys. Res. Lett. 36, L11102 (2009). doi: 10.1029/2009GL037519 ADSCrossRefGoogle Scholar
  32. Willson, R.C.: Radiometer Comparison Tests. JPL Technical Memorandum 33-371, Jet Propulsion Laboratory, Pasadena, CA, USA (1967) Google Scholar
  33. Willson, R.C.: Active cavity radiometric scale, internation pyrheliometri scale, and solar constant. J. Geophys. Res. 76(19), 4325–4340 (1971). doi: 10.1029/JA076i019p04325 ADSCrossRefGoogle Scholar
  34. Willson, R.C.: Active cavity radiometer. Appl. Opt. 12(4), 810–817 (1973). doi: 10.1364/AO.12.000810 ADSCrossRefGoogle Scholar
  35. Willson, R.C.: Accurate solar ‘constant’ determinations by cavity pyrheliometers. J. Geophys. Res. 83(C8), 4003–4007 (1978). doi: 10.1029/JC083iC08p04003 ADSCrossRefGoogle Scholar
  36. Willson, R.C.: Active cavity radiometer type IV. Appl. Opt. 18(2), 179–188 (1979). doi: 10.1364/AO.18.000179 ADSCrossRefGoogle Scholar
  37. Willson, R.C.: Active cavity radiometer type V. J. Appl. Opt. 19(19), 3256–3257 (1980). doi: 10.1364/AO.19.003256 ADSCrossRefGoogle Scholar
  38. Willson, R.C.: Measurements of solar total irradiance and its variability. Space Sci. Rev. 38(3–4), 203–242 (1984). doi: 10.1007/BF00176830 ADSGoogle Scholar
  39. Willson, R.C.: Total solar irradiance trend during solar cycles 21 and 22. Science 277(5334), 1963–1965 (1997). doi: 10.1126/science.277.5334.1963 ADSCrossRefGoogle Scholar
  40. Willson, R.C.: ACRIMSAT/ACRIM3 Algorithm Theoretical Basis Document (1999) Google Scholar
  41. Willson, R.C.: The ACRIMSAT/ACRIM3 Experiment—Extending the Precision, Long-Term Total Solar Irradiance Climate Database, NASA, The Earth Observer, May–June, 2001 Google Scholar
  42. Willson, R.C.: LASP_TRF diagnostic test results for the ACRIM3 experiment and their implications for the multi-decadal TSI database. In: SORCE Science Team Meeting Proceedings, Sedona, AZ, Sep. 13–16, 2011 Google Scholar
  43. Willson, R.C., Hudson, H.S.: The Sun’s luminosity over a complete solar cycle. Nature 351, 42–44 (1991). doi: 10.1038/351042a0 ADSCrossRefGoogle Scholar
  44. Willson, R.C., Mordvinov, A.V.: Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003). doi: 10.1029/2002GL016038 ADSCrossRefGoogle Scholar
  45. Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S., Chapman, G.A.: Observations of solar irradiance variability. Science 211, 700 (1981). doi: 10.1126/science.211.4483.700 ADSCrossRefGoogle Scholar
  46. Willson, R.C., Hudson, H.S., Frohlich, C., Brusa, R.W.: Long term downward trend in total solar irradiance. Science 234, 1114 (1986) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.ACRIMCoronadoUSA

Personalised recommendations