Advertisement

Astrophysics and Space Science

, Volume 352, Issue 2, pp 493–496 | Cite as

Satellite orbital precessions caused by the first odd zonal J3 multipole of a non-spherical body arbitrarily oriented in space

  • G. Renzetti
Original Article

Abstract

An astronomical body of mass M and radius R which is non-spherically symmetric generates a free space potential U which can be expanded in multipoles. As such, the trajectory of a test particle orbiting it is not a Keplerian ellipse fixed in the inertial space. The zonal harmonic coefficients J2,J3,… of the multipolar expansion of the potential cause cumulative orbital perturbations which can be either harmonic or secular over time scales larger than the unperturbed Keplerian orbital period T. Here, I calculate the averaged rates of change of the osculating Keplerian orbital elements due to the odd zonal harmonic J3 by assuming an arbitrary orientation of the body’s spin axis \(\hat{\boldsymbol{k}}\). I use the Lagrange planetary equations, and I make a first-order calculation in J3. I do not make a-priori assumptions concerning the eccentricity e and the inclination i of the satellite’s orbit.

Keywords

Experimental studies of gravity Satellite orbits Harmonics of the gravity potential field 

References

  1. Albrecht, S., Winn, J.N., Johnson, J.A., Howard, A.W., Marcy, G.W., Butler, R.P., Arriagada, P., Crane, J.D., Shectman, S.A., Thompson, I.B., Hirano, T., Bakos, G., Hartman, J.D.: Astrophys. J. 757, 18 (2012) ADSCrossRefGoogle Scholar
  2. Batygin, K.: Nature 491, 418 (2012) ADSCrossRefGoogle Scholar
  3. Brumberg, V.A.: Essential Relativistic Celestial Mechanics. Adam Hilger, Bristol (1991) zbMATHGoogle Scholar
  4. Capderou, M.: Satellites. Orbits and Missions. Springer, Paris (2005) Google Scholar
  5. Collier Cameron, A., Guenther, E., Smalley, B., McDonald, I., Hebb, L., Andersen, J., Augusteijn, T., Barros, S.C.C., Brown, D.J.A., et al.: Mon. Not. R. Astron. Soc. 407, 507 (2010) ADSCrossRefGoogle Scholar
  6. Cook, A.H.: Space Sci. Rev. 2, 355 (1963) ADSCrossRefGoogle Scholar
  7. Deleflie, F., Métris, G., Exertier, P.: Celest. Mech. Dyn. Astron. 94, 105 (2006a) ADSCrossRefGoogle Scholar
  8. Deleflie, F., Métris, G., Exertier, P.: Celest. Mech. Dyn. Astron. 94, 83 (2006b) ADSCrossRefGoogle Scholar
  9. Fabrycky, D.C., Winn, J.N.: Astrophys. J. 696, 1230 (2009) ADSCrossRefGoogle Scholar
  10. Giacaglia, G.E.O.: Astron. J. 69, 303 (1964) ADSMathSciNetCrossRefGoogle Scholar
  11. Gizon, L., Solanki, S.K.: Astrophys. J. 589, 1009 (2003) ADSCrossRefGoogle Scholar
  12. Heimberger, J., Soffel, M., Ruder, H.: Celest. Mech. Dyn. Astron. 47, 205 (1990) ADSCrossRefGoogle Scholar
  13. Huber, D., Carter, J.A., Barbieri, M., Miglio, A., Deck, K.M., Fabrycky, D.C., et al.: Science 342, 331 (2013) ADSCrossRefGoogle Scholar
  14. Iorio, L.: Il Nuovo Cimento B 116, 777 (2001) ADSGoogle Scholar
  15. Iorio, L.: Celest. Mech. Dyn. Astron. 86, 277 (2003) ADSCrossRefGoogle Scholar
  16. Iorio, L.: J. Geod. 80, 128 (2006a) ADSCrossRefGoogle Scholar
  17. Iorio, L.: Class. Quantum Gravity 23, 5451 (2006b) ADSCrossRefGoogle Scholar
  18. Iorio, L.: Space Sci. Rev. 148, 363 (2009) ADSCrossRefGoogle Scholar
  19. Iorio, L.: New Astron. 15, 554 (2010) ADSCrossRefGoogle Scholar
  20. Iorio, L.: Phys. Rev. D 84, 124001 (2011) ADSCrossRefGoogle Scholar
  21. Iorio, L.: Class. Quantum Gravity 30, 195011 (2013) ADSMathSciNetCrossRefGoogle Scholar
  22. Iorio, L.: arXiv:1402.5947 (2014)
  23. Iorio, L., Ciufolini, I., Pavlis, E.C., Schiller, S., Dittus, H., Lämmerzahl, C.: Class. Quantum Gravity 21, 2139 (2004) ADSCrossRefGoogle Scholar
  24. Iorio, L., Ruggiero, M., Corda, C.: Acta Astronaut. 91, 141 (2013) ADSCrossRefGoogle Scholar
  25. Johnson, J.A., Winn, J.N., Albrecht, S., Howard, A.W., Marcy, G.W., Gazak, J.Z.: Publ. Astron. Soc. Pac. 121, 1104 (2009) ADSCrossRefGoogle Scholar
  26. King-Hele, D.G.: Geophys. J. Int. 4, 3 (1961) ADSMathSciNetCrossRefGoogle Scholar
  27. King-Hele, D.G.: Geophys. J. Int. 74, 7 (1983) ADSCrossRefGoogle Scholar
  28. King-Hele, D.G., Cook, G.E.: Nature 246, 86 (1973) ADSCrossRefGoogle Scholar
  29. King-Hele, D.G., Cook, G.E., Rees, J.M.: Nature 197, 785 (1963) ADSCrossRefGoogle Scholar
  30. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L.: Icarus 182, 23 (2006) ADSCrossRefGoogle Scholar
  31. Kozai, Y.: Space Sci. Rev. 5, 818 (1966) ADSCrossRefGoogle Scholar
  32. Le Bouquin, J.-B., Absil, O., Benisty, M., Massi, F., Mérand, A., Stefl, S.: Astron. Astrophys. 498, L41 (2009) ADSCrossRefGoogle Scholar
  33. McAlister, H.A., ten Brummelaar, T.A., Gies, D.R., Huang, W., Bagnuolo, W.G. Jr., Shure, M.A., Sturmann, J., Sturmann, L., Turner, N.H., Taylor, S.F., Berger, D.H., Baines, E.K., Grundstrom, E., Ogden, C., Ridgway, S.T., van Belle, G.: Astrophys. J. 628, 439 (2005) ADSCrossRefGoogle Scholar
  34. O’Keefe, J.A., Eckels, A., Squires, R.K.: Science 129, 565 (1959) ADSCrossRefGoogle Scholar
  35. Renzetti, G.: J. Astrophys. Astron. 34(4), 341–348 (2013) ADSCrossRefGoogle Scholar
  36. Singh, J., Umar, A.: Astrophys. Space Sci. 348(2), 393–402 (2013) ADSCrossRefGoogle Scholar
  37. Soffel, M., Wirrer, R., Schastok, J., Ruder, H., Schneider, M.: Celest. Mech. 42, 81 (1988) ADSCrossRefGoogle Scholar
  38. Wagner, C.A.: J. Geophys. Res. 78, 3271 (1973) ADSCrossRefGoogle Scholar
  39. Wagner, C.A., McAdoo, D.C.: J. Geod. 86, 99 (2012) ADSCrossRefGoogle Scholar
  40. Winn, J.N., Noyes, R.W., Holman, M.J., Charbonneau, D., Ohta, Y., Taruya, A., Suto, Y., Narita, N., Turner, E.L., Johnson, J.A., Marcy, G.W., Butler, R.P., Vogt, S.S.: Astrophys. J. 631, 1215 (2005) ADSCrossRefGoogle Scholar
  41. Winn, J.N., Fabrycky, D., Albrecht, S., Johnson, J.A.: Astrophys. J. Lett. 718, L145 (2010) ADSCrossRefGoogle Scholar
  42. Xu, Y., Yang, Y., Zhang, Q., Xu, G.: Mon. Not. R. Astron. Soc. 415, 3335 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.PescaraItaly

Personalised recommendations