Astrophysics and Space Science

, Volume 352, Issue 1, pp 235–244 | Cite as

Astronomical redshifts of highly ionized regions

Original Article


Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.


AGN BLR Plasmas QSO Redshift Scattering 


  1. Baldwin, J.A., Ferland, G.J., Korista, K.T., Hamann, F., Dietrich, M.: Astrophys. J. 582, 590 (2003) ADSCrossRefGoogle Scholar
  2. Bertolotti, M., Scudieri, F., Verginelli, S.: Appl. Opt. 15(7), 1842 (1976) ADSCrossRefGoogle Scholar
  3. Bocko, M.F., Douglass, D.H., Knox, R.S.: Phys. Rev. Lett. 58(25), 2649 (1987) ADSCrossRefGoogle Scholar
  4. Cox, A.N. (ed.): Allen’s Astrophysical Quantities, 4th edn. Springer, New York (2000) Google Scholar
  5. Dietrich, M., Wagner, S.J., Courvoisier, T.J.-L., Bock, H., North, P.: Astron. Astrophys. 351, 31 (1999) ADSGoogle Scholar
  6. Engineering Statistics Handbook, NIST/SEMATECH e-Handbook of Statistical Methods. (2012)
  7. Goad, M., Wanders, I.: Astrophys. J. 469, 1130 (1996) CrossRefGoogle Scholar
  8. Gori, F., Guattari, C., Palma, C.: Opt. Commun. 67(1), 1 (1988) ADSCrossRefGoogle Scholar
  9. Harwit, M.: Astrophysical Concepts. Springer, New York (2006) MATHGoogle Scholar
  10. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975) MATHGoogle Scholar
  11. James, D.F.V., Wolf, E.: Phys. Lett. A 146(4), 167 (1990) ADSCrossRefGoogle Scholar
  12. James, D.F.V.: Pure Appl. Opt. 7, 959 (1998) ADSCrossRefGoogle Scholar
  13. Krishan, V.: Phys. Scr. T 52, 118 (1994) ADSCrossRefGoogle Scholar
  14. Krolik, J.H.: Active Galactic Nuclei. Princeton University Press, Princeton (1999) Google Scholar
  15. Kulsrud, R.M.: Plasma Physics for Astrophysics. Princeton University Press, Princeton (2005) Google Scholar
  16. Lang, K.R.: Astrophysical Formulae, 2nd edn. Springer, New York (1980) CrossRefGoogle Scholar
  17. Laor, A., Barth, A.J., Ho, L.C., Filippenko, A.V.: Astrophys. J. 636, 83 (2006) ADSCrossRefGoogle Scholar
  18. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, New York (1995) CrossRefGoogle Scholar
  19. NASA/IPAC NED, Operated by JPL/CIT under contract to NASA. (2012)
  20. Netzer, H.: In: Alloin, D., Johnson, R., Lira, P. (eds.) Physics of Active Galactic Nuclei at All Scales. Springer, Berlin, Heidelberg (2006) Google Scholar
  21. Osterbrock, D.E.: Rep. Prog. Phys. 54, 579 (1991) ADSCrossRefGoogle Scholar
  22. Osterbrock, D.E., Ferland, G.J.: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edn. University Science Books, Sausalito, California (2006) Google Scholar
  23. Peterson, B.M.: An Introduction to Active Galactic Nuclei. Cambridge University Press, Cambridge (1997) CrossRefGoogle Scholar
  24. Peterson, B.M.: In: Alloin, D., Johnson, R., Lira, P. (eds.) Physics of Active Galactic Nuclei at All Scales. Springer, Berlin, Heidelberg (2006) Google Scholar
  25. Rees, M.J., Netzer, H., Ferland, G.J.: Astrophys. J. 347, 640 (1989) ADSCrossRefGoogle Scholar
  26. Schmidt, G.: Physics of High Temperature Plasmas, 2nd edn. Academic Press, New York (1979) Google Scholar
  27. Webster, A.J.: Phys. Plasmas 17, 110708 (2010) ADSCrossRefGoogle Scholar
  28. Weedman, D.W.: Quasar Astronomy. Cambridge University Press, Cambridge (1986) CrossRefGoogle Scholar
  29. Weibel, E.S.: Phys. Fluids 2(1), 52 (1959) ADSCrossRefGoogle Scholar
  30. Wolf, E.: Phys. Rev. Lett. 56, 1370 (1986) ADSCrossRefGoogle Scholar
  31. Wolf, E., Foley, J.T., Gori, F.: J. Opt. Soc. Am. A 6, 8 (1989) CrossRefGoogle Scholar
  32. Wolf, E., James, D.F.V.: Rep. Prog. Phys. 59, 771 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.TorranceUSA

Personalised recommendations