Advertisement

Astrophysics and Space Science

, Volume 351, Issue 1, pp 143–149 | Cite as

Relativistic restricted three body problem with oblatness and photo-gravitational corrections to triangular equilibrium points

  • D. A. Katour
  • F. A. Abd El-Salam
  • M. O. Shaker
Original Article

Abstract

The photogravitational restricted three bodies within the framework of the post-Newtonian approximation is carried out. The mass of the primaries are assumed changed under the effect of continuous radiation process and oblateness effects of the two primaries. New perturbed locations of the triangular points are computed. In order to introduce a semi-analytical view, A Mathematica program is constructed so as to draw the locations of triangular points versus the whole range of the mass ratio μ taking into account the photo-gravitational effects, the relativistic corrections and/or oblateness effects. All the obtained figures are analyzed.

Keywords

Three body problem Relativistic corrections Photo-gravitational effects Oblatness Triangular points 

References

  1. Abd El-Salam, F., Abd El-Bar, S.: Formulation of the post-Newtonian equations of motion of the restricted three body problem. J. Appl. Math. 2, 155–164 (2011) CrossRefMathSciNetGoogle Scholar
  2. Abouelmagd, E.I., Sharaf, M.A.: The motion around the libration points in the restricted three-body problem with the effect of radiation and oblateness. Astrophys. Space Sci. 344(2), 321–332 (2013) ADSCrossRefzbMATHGoogle Scholar
  3. AbdulRaheem, A., Singh, J.: Combined effects of perturbations, radiation and oblateness on the periodic orbits in the restricted three-body problem. Astrophys. Space Sci. 317, 9–13 (2008) ADSCrossRefzbMATHGoogle Scholar
  4. Bhatnagar, K.B., Hallan, P.P.: Existence and stability of L4,5 in the relativistic restricted three body problem. Celest. Mech. 69, 271–281 (1998) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. Brumberg, V.A.: Relativistic Celestial Mechanics. Nauka, Moscow (1972) zbMATHGoogle Scholar
  6. Douskos, C.N.: Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction. Astrophys. Space Sci. 326, 263–271 (2010) ADSCrossRefzbMATHGoogle Scholar
  7. Guo, J., Stoica, C., Arredondo, J.A., Tamayo, C.: On the restricted three body problem with oblate primaries. Astrophys. Space Sci. 341(2), 315–322 (2012) ADSCrossRefzbMATHGoogle Scholar
  8. Kalantonis, V.S., Perdios, E.A., Perdiou, A.E.: The Sitnikov family and the associated families of 3D periodic orbits in the photogravitational RTBP with oblateness”. Astrophys. Space Sci. 315(1–4), 323–334 (2008) ADSCrossRefGoogle Scholar
  9. Kumar, S., Ishwar, B.: Solutions of generalized photogravitational elliptic restricted three body problem. AIP Conf. Proc. 1146, 456–461 (2009) ADSCrossRefGoogle Scholar
  10. Kumar, S., Ishwar, B.: Location of collinear equilibrium points in the generalized photogravitational elliptic restricted three body problem. Int. J. Eng. Sci. Technol. 3(2), 157–162 (2011) CrossRefGoogle Scholar
  11. Kunitsyn, A.L., Polyakhova, E.N.: The restricted photogravitational three-body problem: a modern state. Astron. Astrophys. Trans. 6, 283–293 (1995) ADSCrossRefGoogle Scholar
  12. Oberti, P., Vienne, A.: An upgraded theory for Helene, Telesto, and Calypso. Astron. Astrophys. 397, 353–359 (2003). doi: 10.1051/0004-6361:20021518 ADSCrossRefGoogle Scholar
  13. Poincaré, H.: Méthodes Nouvelles de la Mécanique Céleste, 1892–1899. Gauthier-Villars, Paris (1892–1899). Google Scholar
  14. Radzievskii, V.V.: The restricted problem of three bodies taking account of light pressure. Astron. Ž. 27, 250 (1950) MathSciNetGoogle Scholar
  15. Radzievskii, V.V.: The space photogravitational restricted three-body problem. Astron. Ž. 30(3), 265–273 (1953) MathSciNetGoogle Scholar
  16. Schuerman, D.W.: Roche potentials including radiation effect. Astrophys. Space Sci. 19, 351–358 (1972) ADSCrossRefGoogle Scholar
  17. Schuerman, D.W.: The restricted three body problem including radiation pressure. Astrophys. J. 238(1), 337–342 (1980). ADSCrossRefMathSciNetGoogle Scholar
  18. Sharma, R.K.: In: Fricke, W., Teleki, G. (eds.) Sun and Planetary System, pp. 435–436. Reidel, Dordrecht (1982) CrossRefGoogle Scholar
  19. Singh, J.: Combined effects of oblateness and radiation on the nonlinear stability of L4 in the restricted three-body problem. Astron. J. 137, 3286–3292 (2009) ADSCrossRefGoogle Scholar
  20. Singh, J., Ishwar, B.: Stability of triangular points in the generalised photogravitational restricted three body problem. Bull. Astron. Soc. India 27, 415 (1999) ADSGoogle Scholar
  21. Singh, J., Leke, O.: Equilibrium points and stability in the restricted three-body problem with oblateness and variable masses. Astrophys. Space Sci. 340(1), 27–41 (2012) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. A. Katour
    • 1
  • F. A. Abd El-Salam
    • 2
    • 3
  • M. O. Shaker
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Department of Mathematics, Faculty of ScienceTaibah UniversityAl-MadinahKSA
  3. 3.Department of Astronomy, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations