Astrophysics and Space Science

, Volume 350, Issue 2, pp 421–442 | Cite as

ACRIM total solar irradiance satellite composite validation versus TSI proxy models

Original Article


The satellite total solar irradiance (TSI) database provides a valuable record for investigating models of solar variation used to interpret climate changes. The 35-year ACRIM total solar irradiance (TSI) satellite composite time series has been revised using algorithm updates based on 13 years of accumulated mission experience and corrections to ACRIMSAT/ACRIM3 results for scattering and diffraction derived from recent testing at the Laboratory for Atmospheric and Space Physics/Total solar irradiance Radiometer Facility (LASP/TRF). The net correction lowers the ACRIM3 scale by ∼3000 ppm, in closer agreement with the scale of SORCE/TIM results (average total solar irradiance ≈1361.5 W/m2). Differences between the ACRIM and PMOD TSI composites are investigated, particularly the decadal trending during solar cycles 21–22 and the Nimbus7/ERB and ERBS/ERBE results available to bridge the ACRIM Gap (1989–1992), are tested against a set of solar proxy models. Our findings confirm the following ACRIM TSI composite features: (1) The validity of the TSI peak in the originally published ERB results in early 1979 during solar cycle 21; (2) The correctness of originally published ACRIM1 results during the SMM spin mode (1981–1984); (3) The upward trend of originally published ERB results during the ACRIM Gap; (4) The occurrence of a significant upward TSI trend between the minima of solar cycles 21 and 22 and (5) a decreasing trend during solar cycles 22–23. The same analytical approach does not support some important features of the PMOD TSI composite: (1) The downward corrections applied to the originally published ERB and ACRIM1 results during solar cycle 21; (2) The step function sensitivity change in ERB results at the end-of-September 1989; (3) The downward trend of ERBE results during the ACRIM Gap and (4) the use of ERBE results to bridge the ACRIM Gap. Our analysis provides a first order validation of the ACRIM TSI composite approach and its 0.037 %/decade upward trend during solar cycles 21–22. The implications of increasing TSI during the global warming of the last two decades of the 20th century are that solar forcing of climate change may be a significantly larger factor than represented in the CMIP5 general circulation climate models.


Solar luminosity Total solar irradiance (TSI) Satellite experimental measurements TSI satellite composites TSI proxy model comparisons 



The National Aeronautics and Space Administration supported Dr. Willson under contracts NNG004HZ42C at Columbia University and Subcontracts 1345042 and 1405003 at the Jet Propulsion Laboratory.


  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88 (2012) ADSCrossRefGoogle Scholar
  2. Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S., Wenzler, T., Mortlock, D.J., Jaffe, A.H.: Reconstruction of total solar irradiance 1974–2009. Astron. Astrophys. 541, A27 (2012) ADSCrossRefGoogle Scholar
  3. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Shawers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001) ADSCrossRefGoogle Scholar
  4. Brekke, P.: Our Explosive Sun. Springer, New York (2012) CrossRefGoogle Scholar
  5. Chambers, D.P., Merrifield, M.A., Nerem, R.S.: Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39, L18607 (2012) ADSGoogle Scholar
  6. Chapman, G.A., Cookson, A.M., Dobias, J.J.: Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541–13548 (1996) ADSCrossRefGoogle Scholar
  7. Charbonneau, P.: Solar physics: the planetary hypothesis revived. Nature 493, 613–614 (2013) ADSCrossRefGoogle Scholar
  8. Dewitte, S., Crommelynck, D., Mekaoui, S., Joukoff, A.: Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004) ADSCrossRefGoogle Scholar
  9. Fox, P.: Solar activity and irradiance variations. In: Pap, J.M., Fox, P. (eds.) Solar Variability and Its Effects on Climate. Geophysical Monograph, vol. 141. American Geophysical Union, Washington (2004) CrossRefGoogle Scholar
  10. Fröhlich, C.: Solar irradiance variability. In: Geophysical Monograph, vol. 141, pp. 97–110. American Geophysical Union, Washington (2004) Google Scholar
  11. Fröhlich, C.: Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Sci. Rev. 125, 53–65 (2006) ADSCrossRefGoogle Scholar
  12. Fröhlich, C.: Total solar irradiance observations. Surv. Geophys. 33, 453–473 (2012) ADSCrossRefGoogle Scholar
  13. Fröhlich, C., Lean, J.: The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1978. Geophys. Res. Lett. 25, 4377–4380 (1998) ADSCrossRefGoogle Scholar
  14. Hoyt, D.V., Schatten, K.H.: A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. 98, 18895–18906 (1993) ADSCrossRefGoogle Scholar
  15. Hoyt, D.V., Kyle, H.L., Hickey, J.R., Maschhoff, R.H.: The nimbus 7 solar total irradiance: a new algorithm for its derivation. J. Geophys. Res. 97, 51–63 (1992) ADSCrossRefGoogle Scholar
  16. Judge, P.G., Judge, P.G., Lockwood, G.W., Radick, R.R., Henry, G.W., Shapiro, A.I., Schmutz, W., Lindsey, C.: Confronting a solar irradiance reconstruction with solar and stellar data. Astron. Astrophys. 544, A88 (2012) ADSCrossRefGoogle Scholar
  17. Klyashtorin, L.B., Borisov, V., Lyubushin, A.: Cyclic changes of climate and major commercial stocks of the Barents Sea. Marine Biol. Res. 5, 4–17 (2009) CrossRefGoogle Scholar
  18. Knudsen, M.F., Seidenkrantz, M.-S., Jacobsen, B.H., Kuijpers, A.: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun. 2, 178 (2011) ADSCrossRefGoogle Scholar
  19. Kopp, G., Lean, J.: A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, L01706 (2011) ADSGoogle Scholar
  20. Kopp, G., Heuerman, K., Harber, D., Drake, G.: The TSI radiometer facility—absolute calibrations for total solar irradiance instruments. Proc. SPIE 6677(09), 26–28 (2007). doi: 10.1117/12.734553 Google Scholar
  21. Kopp, G., Fehlmann, A., Finsterle, W., Harber, D., Heuerman, K., Willson, R.C.: Total solar irradiance data record accuracy and consistency improvements. Metrologia 49, S29 (2012). doi: 10.1088/0026-1394/49/2/S29 ADSCrossRefGoogle Scholar
  22. Krivova, N.A., Balmaceda, L., Solanki, S.K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007) ADSCrossRefGoogle Scholar
  23. Krivova, N.A., Solanki, S.K., Wenzler, T.: ACRIM gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophys. Res. Lett. 36, L20101 (2009) ADSCrossRefGoogle Scholar
  24. Lean, J.: Living with a variable sun. Phys. Today 58(6), 32–38 (2005) CrossRefGoogle Scholar
  25. Lean, J., Beer, J., Bradley, R.: Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995) ADSCrossRefGoogle Scholar
  26. Liu, J., Wang, B., Cane, M.A., Yim, S.-Y., Lee, J.-Y.: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493, 656–659 (2013) ADSCrossRefGoogle Scholar
  27. Ljungqvist, F.C.: A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann., Ser. A, Phys. Geogr. 92, 339–351 (2010) CrossRefGoogle Scholar
  28. Lockwood, M.: Solar influence on global and regional climates. Surv. Geophys. 33, 503–534 (2012) ADSCrossRefGoogle Scholar
  29. Loehle, C., Scafetta, N.: Climate change attribution using empirical decomposition of climatic data. Open Atmos. Sci. J. 5, 74–86 (2011) CrossRefGoogle Scholar
  30. Mann, M.E., Bradley, R.S., Hughes, M.K.: Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. 26(6), 759–762 (1999) ADSCrossRefGoogle Scholar
  31. Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA 105, 13252–13257 (2008) ADSCrossRefGoogle Scholar
  32. Mazzarella, A., Scafetta, N.: Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change. Theor. Appl. Climatol. 107, 599–609 (2012). doi: 10.1007/s00704-011-0499-4 ADSCrossRefGoogle Scholar
  33. Moberg, A., Dmitry, M., Holmgren, K., Datsenko, N.M., Karlén, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005) ADSCrossRefGoogle Scholar
  34. Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: Long-period cycles of the Sun’s activity recorded in direct solar data and proxies. Sol. Phys. 211, 371–394 (2002) ADSCrossRefGoogle Scholar
  35. Parker, D.E., Legg, T.P., Folland, C.K.: A new daily central England temperature series, 1772–1991. Int. J. Climatol. 12, 317–342 (1992) CrossRefGoogle Scholar
  36. Qian, W.-H., Lu, B.: Periodic oscillations in millennial global-mean temperature and their causes. Chin. Sci. Bull. 55, 4052–4057 (2010) CrossRefGoogle Scholar
  37. Lee III, R.B., Gibson, M.A., Wilson, R.S., Thomas, S.: Long-term total solar irradiance variability during sunspot cycle 22. J. Geophys. Res. 100, 1667–1675 (1995) ADSCrossRefGoogle Scholar
  38. Scafetta, N.: Empirical analysis of the solar contribution to global mean air surface temperature change. J. Atmos. Sol.-Terr. Phys. 71, 1916–1923 (2009). doi: 10.1016/j.jastp.2009.07.007 ADSCrossRefGoogle Scholar
  39. Scafetta, N.: Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol.-Terr. Phys. 72, 951–970 (2010). doi: 10.1016/j.jastp.2010.04.015 ADSCrossRefGoogle Scholar
  40. Scafetta, N.: Total solar irradiance satellite composites and their phenomenological effect on climate. In: Easterbrook, D. (ed.) Evidence-Based Climate Science, vol. 12, pp. 289–316. Elsevier, Amsterdam (2011). doi: 10.1016/B978-0-12-385956-3.10012-9 CrossRefGoogle Scholar
  41. Scafetta, N.: Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC (2007) general circulation climate models. J. Atmos. Sol.-Terr. Phys. 80, 124–137 (2012a). doi: 10.1016/j.jastp.2011.12.005 ADSCrossRefGoogle Scholar
  42. Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.-Terr. Phys. 80, 296–311 (2012b). doi: 10.1016/j.jastp.2012.02.016 ADSCrossRefGoogle Scholar
  43. Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81–82, 27–40 (2012c). doi: 10.1016/j.jastp.2012.04.002 CrossRefGoogle Scholar
  44. Scafetta, N.: Common errors in analyzing sea level accelerations, solar trends and temperature records. Pattern Recognit. Phys. 1, 37–58 (2013a). doi: 10.5194/prp-1-37-2013 ADSCrossRefGoogle Scholar
  45. Scafetta, N.: Solar and planetary oscillation control on climate change: hind-cast, forecast and a comparison with the CMIP5 GCMs. Energy Environ. 24(3–4), 455–496 (2013b). doi: 10.1260/0958-305X.24.3-4.455 CrossRefGoogle Scholar
  46. Scafetta, N.: Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321–357 (2013c). doi: 10.1016/j.earscirev.2013.08.008 ADSCrossRefGoogle Scholar
  47. Scafetta, N.: The complex planetary synchronization structure of the solar system. Pattern Recognit. Phys. 2, 1–19 (2014). doi: 10.5194/prp-2-1-2014. In the Special Issue “Pattern in Solar Variability, Their Planetary Origin and Terrestrial Impacts”, N.-A. Mörner, R. Tattersall, and J.-E. Solheim (Eds.) ADSCrossRefGoogle Scholar
  48. Scafetta, N., West, B.J.: Estimated solar contribution to the global surface warming using the ACRIM TSI satellite composite. Geophys. Res. Lett. 32, L18713 (2005). doi: 10.1029/2005GL023849 ADSCrossRefGoogle Scholar
  49. Scafetta, N., West, B.J.: Phenomenological reconstructions of the solar signature in the NH surface temperature records since 1600. J. Geophys. Res. 112, D24S03 (2007). doi: 10.1029/2007JD008437 CrossRefGoogle Scholar
  50. Scafetta, N., Willson, R.C.: ACRIM gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys. Res. Lett. 36, L05701 (2009). doi: 10.1016/j.pss.2013.01.005 ADSGoogle Scholar
  51. Scafetta, N., Willson, R.C.: Planetary harmonics in the historical Hungarian aurora record (1523–1960). Planet. Space Sci. 78, 38–44 (2013a). doi: 10.1016/j.pss.2013.01.005 ADSCrossRefGoogle Scholar
  52. Scafetta, N., Willson, R.C.: Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth-Jupiter conjunction cycle. Astrophys. Space Sci. 348, 25–39 (2013b). doi: 10.1007/s10509-013-1558-3 ADSCrossRefGoogle Scholar
  53. Scafetta, N., Willson, R.C.: Multiscale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its nonlinear dependence on the 11 yr solar cycle. Pattern Recognit. Phys. 1, 123–133 (2013c). doi: 10.5194/prp-1-123-2013 ADSCrossRefGoogle Scholar
  54. Schulz, M., Paul, A.: Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. In: Wefer, G., Berger, W.H., et al. (eds.) Climate Development and History of the North Atlantic Realm. pp. 41–54. Springer, Berlin (2002) CrossRefGoogle Scholar
  55. Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., Nyeki, S.: A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67 (2011) ADSCrossRefGoogle Scholar
  56. IPCC: In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007) Google Scholar
  57. Soon, W.: Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years. Geophys. Res. Lett. 32, L16712 (2005) ADSCrossRefGoogle Scholar
  58. Soon, W., Legates, D.R.: Solar irradiance modulation of Equator-to-Pole (Arctic) temperature gradients: empirical evidence for climate variation on multi-decadal time scales. J. Atmos. Sol.-Terr. Phys. 93, 45–56 (2013) ADSCrossRefGoogle Scholar
  59. Soon, W., Dutta, K., Legates, D.R., Velasco, V., Zhang, W.: Variation in surface air temperature of China during the 20th century. J. Atmos. Sol.-Terr. Phys. 73, 2331–2344 (2011) ADSCrossRefGoogle Scholar
  60. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkiläd, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109, 5967–5971 (2012) ADSCrossRefGoogle Scholar
  61. Svensmark, H.: Cosmoclimatology: a new theory emerges. Astron. Geophys. 48, 1.18–1.24 (2007) ADSCrossRefGoogle Scholar
  62. Thejll, P., Lassen, K.: Solar forcing of the northern hemisphere land air temperature: new data. J. Atmos. Sol.-Terr. Phys. 62, 1207–1213 (2000) ADSCrossRefGoogle Scholar
  63. Wang, Y.-M., Lean, J.L., Sheeley Jr., N.R.: Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005) ADSCrossRefGoogle Scholar
  64. Wenzler, T., Solanki, S.K., Krivova, N.A., Fröhlich, C.: Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astron. Astrophys. 460, 583–595 (2006) ADSCrossRefGoogle Scholar
  65. Wenzler, T., Solanki, S.K., Krivova, N.A.: Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophys. Res. Lett. 36, L11102 (2009) ADSCrossRefGoogle Scholar
  66. Willson, R.C.: Total solar irradiance trend during solar cycles 21 and 22. Science 277, 1963–1965 (1997) ADSCrossRefGoogle Scholar
  67. Willson, R.C.: The ACRIMSAT/ACRIM III experiment—extending the precision, long-term total solar irradiance climate database. Earth Obs. 13, 14–17 (2001) Google Scholar
  68. Willson, R.C., Hudson, H.S.: The Sun’s luminosity over a complete solar cycle. Nature 351, 42–44 (1991) ADSCrossRefGoogle Scholar
  69. Willson, R.C., Mordvinov, A.V.: Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30, 1199 (2003) ADSCrossRefGoogle Scholar
  70. Willson, R.C.: Irradiance observations of SMM, spacelab 1, UARS and ATLAS experiments. In: Pap, J., et al. (eds.) The Sun as a Variable Star. Proc. Int. Astron. Union Colloq., vol. 143, pp. 54–62. Cambridge Univ. Press, New York (1994) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Active Cavity Radiometer Irradiance Monitor (ACRIM)CoronadoUSA
  2. 2.Duke UniversityDurhamUSA

Personalised recommendations