Advertisement

Astrophysics and Space Science

, Volume 350, Issue 2, pp 755–767 | Cite as

From magnitudes and redshifts of supernovae, their light-curves, and angular sizes of galaxies to a tenable cosmology

  • Hartmut Traunmüller
Original Article

Abstract

Early physical cosmologies were based on interpretations of the cosmic redshift for which there was insufficient evidence and on theories of gravitation that appear to be falsified by galactic dynamics. Eventually, the big bang paradigm came to be guarded against refutation by ad hoc hypotheses (dark matter, cosmic inflation, dark energy) and free parameters. Presently available data allow a more satisfactory phenomenological approach. Using data on magnitude and redshift from 892 type Ia supernovae, it is first shown that these suggest that the redshift factor (1+z) is simply an exponential function of distance and that, for “standard candles”, magnitude m=5log[(1+z)ln(1+z)]+const. While these functions are incompatible with a big bang, they characterize certain tired light models as well as exponential expansion models. However, the former are falsified by the stretched light curves of distant supernovae and the latter by the absence of a predicted 1+z increase in the angular sizes of galaxies. Instead, the observations suggest that physical processes speed up and objects contract uniformly as an exponential function of time, standards of measurement not excluded, and only free waves being excepted. Distant events proceed, then, more slowly, while angular sizes remain unaffected, approximately as observed. Since all objects contract in proportion, the Universe retains a static appearance. A corresponding physical theory, which should also explain galactic dynamics, remains yet to be derived from first principles. A way to do this, satisfying also Mach’s principle, is vaguely suggested.

Keywords

History and philosophy of astronomy Cosmology: observations Cosmology: theory Supernovae: general 

Notes

Acknowledgements

I wish to thank the Scientific Editor of MNRAS and an anonymous reviewer called in by Ap&SS for valuable points of view on previous versions of this paper; to the first especially for having brought me to simplify the evaluation of SNe Ia data, and to the second especially for having identified several points where a misunderstanding could arise.

References

  1. Amanullah, R., et al.: Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  2. Assis, A.K.T., Neves, M.C.D.: Astrophys. Space Sci. 227, 13 (1995) ADSCrossRefGoogle Scholar
  3. Bekenstein, J.D.: Phys. Rev. D, Part. Fields 70, 083509 (2004) ADSCrossRefGoogle Scholar
  4. Blondin, S., et al.: Astrophys. J. 682, 724 (2008) ADSCrossRefGoogle Scholar
  5. Bondi, H., Gold, T.: Mon. Not. R. Astron. Soc. 108, 252 (1948) ADSzbMATHGoogle Scholar
  6. Born, M.: Proc. Phys. Soc. A 67, 193 (1954) ADSCrossRefzbMATHGoogle Scholar
  7. Bouwens, R., Broadhurst, T., Illingworth, G.: Astrophys. J. 593, 640 (2003) ADSCrossRefGoogle Scholar
  8. Bouwens, R.J., et al.: Astrophys. J. 611, L1 (2004) ADSCrossRefGoogle Scholar
  9. Brynjolfsson, A.: arXiv:astro-ph/0602500 (2006)
  10. Crawford, D.F.: Curvature Cosmology. Brown Walker Press, Miami (2006) Google Scholar
  11. Crawford, D.F.: arXiv:0901.4172 (2009)
  12. Dai, D.C., et al.: Phys. Rev. Lett. 108, 231302 (2012) ADSCrossRefGoogle Scholar
  13. de Broglie, L.: CR, série B 263, 589 (1966) Google Scholar
  14. Djorgovski, S., Spinrad, H.: Astrophys. J. 251, 417 (1981) ADSCrossRefGoogle Scholar
  15. Einstein, A.: Sitzber. K Preuss Akad. VI, 142 (1917) Google Scholar
  16. Famaey, B., McGaugh, S.: Living Rev. Relativ. 15, 10 (2012) ADSCrossRefGoogle Scholar
  17. Ferguson, H.C., et al.: Astrophys. J. 600, L107 (2004) ADSCrossRefGoogle Scholar
  18. Filippenko, A.V., Riess, A.G.: Phys. Rep. 307, 31 (1998) ADSCrossRefGoogle Scholar
  19. Finlay-Freundlich, E.: Philos. Mag. 45, 303 (1954) Google Scholar
  20. Foley, R.J., et al.: Astrophys. J. 626, L11 (2005) ADSCrossRefGoogle Scholar
  21. Friedmann, A.: Z. Phys. 10, 377 (1922) ADSCrossRefGoogle Scholar
  22. Friedmann, A.: Z. Phys. 10, 326 (1924) ADSCrossRefGoogle Scholar
  23. Goldhaber, G., et al.: In: Ruiz-Lapuente, P., Canal, R., Isern, J. (eds.) Thermonuclear Supernovae, p. 777. Kluwer, Dordrecht (1997) CrossRefGoogle Scholar
  24. Goldhaber, G., et al.: Astrophys. J. 558, 359 (2001) ADSCrossRefGoogle Scholar
  25. Guth, A.H.: Phys. Rev. D, Part. Fields 23, 347 (1981) ADSCrossRefGoogle Scholar
  26. Guy, J., et al.: Astron. Astrophys. 523, A7 (2010) ADSCrossRefGoogle Scholar
  27. Hathi, N.P., Malhotra, S., Rhoads, J.E.: Astrophys. J. 673, 686 (2006) ADSCrossRefGoogle Scholar
  28. Hawkins, M.R.S.: Mon. Not. R. Astron. Soc. 405, 1940 (2010) ADSGoogle Scholar
  29. Hicken, M., et al.: Astrophys. J. 700, 1097 (2009) ADSCrossRefGoogle Scholar
  30. Hoyle, F.: Mon. Not. R. Astron. Soc. 108, 372 (1948) ADSzbMATHGoogle Scholar
  31. Hubble, E.: Proc. Natl. Acad. Sci. USA 15, 160 (1929) ADSCrossRefGoogle Scholar
  32. Hubble, E., Humason, M.L.: Astrophys. J. 74, 43 (1931) ADSCrossRefGoogle Scholar
  33. Kashlinsky, A., et al.: Astrophys. J. 686, L49 (2008) ADSCrossRefGoogle Scholar
  34. Kellermann, K.I.: Astron. J. 77, 531 (1972) ADSCrossRefGoogle Scholar
  35. Kroupa, P.: Publ. Astron. Soc. Aust. 29, 395 (2012) ADSCrossRefGoogle Scholar
  36. Kuhn, T.: The Structure of Scientific Revolutions. Univ. Chicago Press, Chicago (1962) Google Scholar
  37. LaViolette, P.A.: Astrophys. J. 301, 544 (1986) ADSCrossRefGoogle Scholar
  38. Leibundgut, B., et al.: Astrophys. J. 466, L21 (1996) ADSCrossRefGoogle Scholar
  39. Lemaître, G.: Ann. Soc. Sci. Brux. 47, 49 (1927) Google Scholar
  40. Livio, M.: Nature 479, 171 (2011) ADSCrossRefGoogle Scholar
  41. López-Corredoira, M.: Int. J. Mod. Phys. D 19, 245 (2010) ADSCrossRefzbMATHGoogle Scholar
  42. Lubin, L.M., Sandage, A.: Astron. J. 122, 1084 (2001) ADSCrossRefGoogle Scholar
  43. Marmet, P., Reber, G.: IEEE Trans. Plasma Sci. 17, 264 (1989) ADSCrossRefGoogle Scholar
  44. Masreliez, C.J.: Apeiron 11, 99 (2004) Google Scholar
  45. Milgrom, M.: Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  46. Milgrom, M.: New Astron. Rev. 46, 741 (2002) ADSCrossRefGoogle Scholar
  47. Moffat, J.W.: J. Cosmol. Astropart. Phys. 05, 003 (2005) ADSCrossRefMathSciNetGoogle Scholar
  48. Newman, A.B., et al.: Astrophys. J. 746, 162 (2012) ADSCrossRefGoogle Scholar
  49. Peebles, P.E.J., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. Perlmutter, S., et al.: Nature 391, 51 (1998) ADSCrossRefGoogle Scholar
  51. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  52. Phillips, M.M.: Astrophys. J. 413, L105 (1993) ADSCrossRefGoogle Scholar
  53. Popper, K.: Logik der Forschung: zur Erkenntnistheorie der modernen Naturwissenschaft. Springer, Wien (1935) CrossRefGoogle Scholar
  54. Riess, A.G., et al.: Astron. J. 114, 722 (1997) ADSCrossRefGoogle Scholar
  55. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  56. Riess, A.G., et al.: Astrophys. J. 560, 49 (2001) ADSCrossRefGoogle Scholar
  57. Rubin, V., Ford, W.K. Jr, Thonnard, N.: Astrophys. J. 238, 471 (1980) ADSCrossRefGoogle Scholar
  58. Sandage, A.R.: Astrophys. J. 173, 485 (1972) ADSCrossRefGoogle Scholar
  59. Sanders, R.H.: Mon. Not. R. Astron. Soc. 342, 901 (2003) ADSCrossRefGoogle Scholar
  60. Sciama, D.W.: Mon. Not. R. Astron. Soc. 113, 34 (1953) ADSzbMATHMathSciNetGoogle Scholar
  61. Sorrell, W.H.: Astrophys. Space Sci. 323, 205 (2009) ADSCrossRefGoogle Scholar
  62. Steinhardt, P.J.: Sci. Am. 304(4), 18 (2011) CrossRefGoogle Scholar
  63. Tolman, R.C.: Proc. Natl. Acad. Sci. USA 16, 511 (1930) ADSCrossRefzbMATHGoogle Scholar
  64. Trujillo, I., et al.: Astrophys. J. 650, 18 (2006) ADSCrossRefGoogle Scholar
  65. Trujillo, I., et al.: Mon. Not. R. Astron. Soc. 382, 109 (2007) ADSCrossRefGoogle Scholar
  66. van der Wel, A., et al.: Astrophys. J. 688, 48 (2008) ADSCrossRefGoogle Scholar
  67. Will, C.M.: Phys. Rev. D, Part. Fields 57, 2061 (1998) ADSCrossRefGoogle Scholar
  68. Williams, R.J., et al.: Astrophys. J. 713, 738 (2010) ADSCrossRefGoogle Scholar
  69. Zwicky, F.: Proc. Natl. Acad. Sci. USA 15, 773 (1929) ADSCrossRefzbMATHGoogle Scholar
  70. Zwicky, F.: Helv. Phys. Acta 6, 110 (1933) ADSGoogle Scholar
  71. Zwicky, F.: Astrophys. J. 86, 217 (1937) ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Stockholm UniversityStockholmSweden

Personalised recommendations