Astrophysics and Space Science

, Volume 349, Issue 1, pp 567–573 | Cite as

Acceleration of black hole universe

  • T. X. Zhang
  • C. Frederick
Original Article


Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive \(\ddot{M}(t) > 0\). For a constant deceleration parameter \(q = -M(t) \ddot{M}(t)/\dot{M}(t) \sim-0.6\), we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red∼1.0012. The expansion and acceleration of black hole universe are driven by external energy.


Cosmology Supernova Luminosity Distance Dark Energy Redshift Black Hole 



Part of this work was previously supported by the NASA EPSCoR (NNX07AL52A) and the National Natural Science Foundation of China (G40890161). Undergraduate student, Mr. C. Frederick, was supported by NSF REU and HBCU-UP programs through Dr. P. Guggilla and Dr. M. Dokhanian.


  1. Arp, H.: New Scientist, May, 22 (2004) Google Scholar
  2. Bernardeau, F., Colombi, S., Gaztanaga, E., Scoccimarro, R., et al.: Phys. Rep. 367, 1 (2002) MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. Brans, C.H., Dicke, R.H.: Phys. Rev. 124, 925 (1961) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. Buchdahl, H.A.: Mon. Not. R. Astron. Soc. 150, 1 (1970) ADSGoogle Scholar
  5. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998) ADSCrossRefGoogle Scholar
  6. Carroll, S.M.: Living Rev. Relativ. 3, 1 (2001) ADSGoogle Scholar
  7. Corasaniti, P.S., Giannantonio, T., Melchiorri, A.: Phys. Rev. D 71, 123521 (2005) ADSCrossRefGoogle Scholar
  8. Chow, N., Khoury, J.: Phys. Rev. D 80, 024037 (2009) ADSCrossRefGoogle Scholar
  9. Daly, R.A., et al.: Astrophys. J. 677, 1 (2008) ADSCrossRefGoogle Scholar
  10. Friedmann, A.: Z. Phys. 10, 377 (1922) ADSCrossRefGoogle Scholar
  11. Friedmann, A.: Z. Phys. 21, 326 (1924) MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. Freund, P.G.O.: Nucl. Phys. B 209, 146 (1982) MathSciNetADSCrossRefGoogle Scholar
  13. Hubble, E.: Proc. Natl. Acad. Sci. USA 15, 168 (1929) ADSCrossRefzbMATHGoogle Scholar
  14. Lemaître, G.: Mon. Not. R. Astron. Soc. 91, 483 (1931) ADSzbMATHGoogle Scholar
  15. Li, M.Z., Qiu, T.T., Cai, Y.F., Zhang, X.M.: J. Cosmol. Astropart. Phys. (2012). doi: 10.1088/1475-7516/2012/04/003 Google Scholar
  16. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Phys. Rep. 215, 203 (1992) MathSciNetADSCrossRefGoogle Scholar
  17. Peebles, P.J., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  19. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988) ADSCrossRefGoogle Scholar
  20. Riazuelo, A., Uzan, J.P.: Phys. Rev. D 66, 023525 (2002) ADSCrossRefGoogle Scholar
  21. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  22. Robertson, H.P.: Astrophys. J. 82, 284 (1935) ADSCrossRefGoogle Scholar
  23. Sawangwit, U., Shanks, T.: Mon. Not. R. Astron. Soc. 407, L16 (2010) ADSCrossRefGoogle Scholar
  24. Sherwin, B.D., et al.: Phys. Rev. Lett. 107, 021302 (2011) ADSCrossRefGoogle Scholar
  25. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010) MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. Suyu, S.H., et al.: Astrophys. J. 711, 201 (2010) ADSCrossRefGoogle Scholar
  27. Tytler, D., et al.: Astrophys. J. 617, 1 (2004) ADSCrossRefGoogle Scholar
  28. Walker, A.G.: Proc. Lond. Math. Soc. 42, 90 (1937) CrossRefGoogle Scholar
  29. Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: Phys. Rev. D 62, 043527 (2000) MathSciNetADSCrossRefGoogle Scholar
  30. Wesson, P.S., Liu, H., Ahluwalia, D.V.: Int. J. Mod. Phys. D 10, 905 (2001) ADSCrossRefzbMATHGoogle Scholar
  31. Zhang, T.X.: Astrophys. J. Lett. 636, L61 (2006) ADSCrossRefGoogle Scholar
  32. Zhang, T.X.: In: AAS 211th Meeting, #152.04. BAAS, vol. 39, p. 1004 (2007) Google Scholar
  33. Zhang, T.X.: Prog. Phys. 2, 3 (2009a) Google Scholar
  34. Zhang, T.X.: In: AAS 213th Meeting. BAAS, vol. 41, p. 499 (2009b) Google Scholar
  35. Zhang, T.X.: In: AAS 214th Meeting, #303.01. BAAS, vol. 41, p. 754 (2009c) Google Scholar
  36. Zhang, T.X.: Astrophys. Space Sci. 330, 157 (2010a) ADSCrossRefzbMATHGoogle Scholar
  37. Zhang, T.X.: In: AAS 215th Meeting, #313.06. BAAS, vol. 42, p. 314 (2010b) Google Scholar
  38. Zhang, T.X.: Astrophys. J. Lett. 725, L117 (2010c) ADSCrossRefGoogle Scholar
  39. Zhang, T.X.: In: AAS 217th Meeting, #404.05. BAAS, vol. 43 (2011) Google Scholar
  40. Zhang, T.X.: In: AAS 219th Meeting, #310.02 (2012a) Google Scholar
  41. Zhang, T.X.:. In: AAS 220th Meeting, #321.07 (2012b) Google Scholar
  42. Zhang, T.X.: Prog. Phys. 3, 48 (2012c) Google Scholar
  43. Zhang, T.X.: Prog. Phys. 3, 33 (2013a) Google Scholar
  44. Zhang, T.X.: In: AAS 221th Meeting, #323.06 (2013b) Google Scholar
  45. Zhang, T.X.: In: AAS 222th Meeting, #103.02 (2013c) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Alabama A & M UniversityNormalUSA

Personalised recommendations