Advertisement

Astrophysics and Space Science

, Volume 348, Issue 2, pp 583–589 | Cite as

Electromagnetic field and dynamics of tilted Lemaitre-Tolman-Bondi spacetimes

  • M. Sharif
  • Amal Majid
Original Article

Abstract

In this paper, we investigate the dynamics of Lemaitre-Tolman-Bondi spacetimes with imperfect fluid in the presence of electromagnetic field. We study the effects of charge with respect to an observer moving radially relative to the fluid, that is, a tilted observer. The relationship between various quantities in the tilted and non-tilted congruences is developed using the Einstein-Maxwell field equations. We explore various factors affecting the inhomogeneities in the energy density of the fluid and also discuss the stability of the non-tilted congruence.

Keywords

Tilted observers Electromagnetic field Energy density inhomogeneity 

References

  1. Bekenstein, J.: Phys. Rev. D 4, 2185 (1971) ADSCrossRefGoogle Scholar
  2. Coley, A.A., Tupper, B.O.J.: Astrophys. J. 271, 1 (1983) ADSCrossRefGoogle Scholar
  3. Di Prisco, A., Herrera, L., Le Denmat, G., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 76, 064017 (2007) ADSCrossRefGoogle Scholar
  4. Eckart, C.: Phys. Rev. 58, 919 (1940) ADSCrossRefGoogle Scholar
  5. Herrera, L.: Int. J. Mod. Phys. D 15, 2197 (2006) MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. Herrera, L.: Int. J. Mod. Phys. D 20, 1689 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. Herrera, L., Di Prisco, A.: Phys. Rev. D 82, 024021 (2010) ADSCrossRefGoogle Scholar
  8. Herrera, L., Santos, N.O.: Phys. Rev. D 70, 084004 (2004) MathSciNetADSCrossRefGoogle Scholar
  9. Herrera, L., Di Prisco, A., Fuenmayor, E., Troconis, O.: Int. J. Mod. Phys. D 18, 129 (2009a) ADSCrossRefzbMATHGoogle Scholar
  10. Herrera, L., Ospino, J., Di Prisco, A., Fuenmayor, E., Troconis, O.: Phys. Rev. D 79, 064025 (2009b) MathSciNetADSCrossRefGoogle Scholar
  11. Herrera, L., Di Prisco, A., Ibanez, J.: Phys. Rev. D 84, 107501 (2011a) ADSCrossRefGoogle Scholar
  12. Herrera, L., Di Prisco, A., Ibanez, J.: Phys. Rev. D 84, 064036 (2011b) ADSCrossRefGoogle Scholar
  13. Herrera, L., Di Prisco, A., Ibanez, J.: Phys. Lett. A 376, 899 (2012) ADSCrossRefzbMATHGoogle Scholar
  14. Israel, W., Stewart, J.: Phys. Lett. A 58, 213 (1976) ADSCrossRefGoogle Scholar
  15. Ivanov, B.: Phys. Rev. D 65, 104001 (2002) MathSciNetADSCrossRefGoogle Scholar
  16. Joshi, P.S., Dwivedi, I.H.: Class. Quantum Gravity 9, L69 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  17. Martinez, J.: Phys. Rev. D 53, 6921 (1996) ADSCrossRefGoogle Scholar
  18. Mashhoon, B., Partovi, M.H.: Phys. Rev. D 20, 2455 (1979) ADSCrossRefGoogle Scholar
  19. Mena, F., Tvakol, R.: Class. Quantum Gravity 16, 435 (1999) ADSCrossRefzbMATHGoogle Scholar
  20. Olson, E., Baityn, M.: Phys. Rev. D 13, 2204 (1976) ADSCrossRefGoogle Scholar
  21. Penrose, R., Hawking, S.W., Isreal, W.: General Relativity, An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979) Google Scholar
  22. Sharif, M., Abbas, G.: Astrophys. Space Sci. 335, 515 (2011) ADSCrossRefzbMATHGoogle Scholar
  23. Sharif, M., Bashir, N.: Gen. Relativ. Gravit. 44, 1725 (2012) MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. Sharif, M., Fatima, S.: Gen. Relativ. Gravit. 43, 127 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. Sharif, M., Siddiqa, A.: Gen. Relativ. Gravit. 43, 73 (2011) MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. Thirukkanesh, S., Maharaj, S.D.: Math. Methods Appl. Sci. 32, 684 (2009) MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. Triginer, J., Pavon, D.: Class. Quantum Gravity 12, 199 (1995a) MathSciNetADSCrossRefGoogle Scholar
  28. Triginer, J., Pavon, D.: Class. Quantum Gravity 12, 689 (1995b) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations