Astrophysics and Space Science

, Volume 345, Issue 2, pp 373–380 | Cite as

Thermodynamics in non-linear electrodynamics with anisotropic universe

Original Article

Abstract

In this work, we consider the framework of non-linear electrodynamics in Bianchi type I universe model composed of matter and electromagnetic field. We deal with electric and magnetic universe separately. In this scenario, we calculate the electric and magnetic fields and their corresponding matter densities using two particular types of interaction terms. We also check the validity of generalized second law of thermodynamics in both universe models enclosed by apparent horizon. It turns out that this law holds on the apparent horizon for a particular range depending upon the parameters. Finally, we discuss the deceleration and statefinder parameters to check the viability of these models.

Keywords

Thermodynamics Non-linear electrodynamics Statefinder parameters 

References

  1. Bandyopadhyay, T., Debnath, U.: Phys. Lett. B 704, 95 (2011) ADSCrossRefGoogle Scholar
  2. Bandyopadhyay, T., Debnath, U.: arXiv:1208.5664 (2012)
  3. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973) MathSciNetADSMATHCrossRefGoogle Scholar
  4. Berej, W., Matyjasek, J.: Phys. Rev. D 66, 024022 (2002) MathSciNetADSCrossRefGoogle Scholar
  5. Bousso, R.: Phys. Rev. D 71, 011 (2005) MathSciNetCrossRefGoogle Scholar
  6. Brandenberger, R., Mukhanov, V., Sornborger, A.: Phys. Rev. D 48, 1629 (1993) MathSciNetADSCrossRefGoogle Scholar
  7. Cai, R.G., Cao, L.M.: Phys. Rev. D 75, 064008 (2007) MathSciNetADSCrossRefGoogle Scholar
  8. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000) ADSCrossRefGoogle Scholar
  9. Collins, C.B.: Phys. Lett. A 60, 397 (1977) MathSciNetADSCrossRefGoogle Scholar
  10. De Lorenci, V.A., Klippert, R., Novello, M., Salim, J.M.: Phys. Rev. D 65, 063501 (2002) ADSCrossRefGoogle Scholar
  11. de Sitter, W.: Proc. K. Ned. Akad. Wet. 19, 1217 (1917) Google Scholar
  12. Gao, C., Wu, F., Chen, X., Shen, Y.G.: Phys. Rev. D 79, 043511 (2009) ADSCrossRefGoogle Scholar
  13. Garcia-Salcedo, R., Breton, N.: Class. Quantum Gravity 22, 4783 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  14. Garcia-Salcedo, R., Gonzalez, T., Moreno, C., Quiros, I.: arXiv:0905.1103 (2009)
  15. Giovannini, M., Shaposhnikov, M.: Phys. Rev. D 57, 2186 (1998) ADSCrossRefGoogle Scholar
  16. Hawking, S., Penrose, R.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 314, 529 (1970) MathSciNetADSMATHCrossRefGoogle Scholar
  17. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  18. Jamil, M., Saridakis, E.N., Setare, M.R.: Phys. Rev. D 81, 023007 (2010) ADSCrossRefGoogle Scholar
  19. Malekjani, M., Khodam-Mohammadi, A., Nazari-pooya, N.: Astrophys. Space Sci. 332, 515 (2011) ADSCrossRefGoogle Scholar
  20. Mukhanov, V., Brandenberger, R.: Phys. Rev. Lett. 68, 1969 (1992) MathSciNetADSMATHCrossRefGoogle Scholar
  21. Narlikar, J.V., Padmanabhan, T.: Phys. Rev. D 32, 1928 (1985) MathSciNetADSCrossRefGoogle Scholar
  22. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 562, 147 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  23. Novello, M., Salim, J.M.: Phys. Rev. D 20, 377 (1979) MathSciNetADSCrossRefGoogle Scholar
  24. Perlmutter, S., et al.: Nature 391, 51 (1998) ADSCrossRefGoogle Scholar
  25. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  26. Padmanabhan, T.: Gen. Relativ. Gravit. 40, 529 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  27. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  28. Sahni, V., et al.: JETP Lett. 77, 201 (2003) ADSCrossRefGoogle Scholar
  29. Salim, J.M., de Olivera, H.P.: Acta Phys. Pol. B 19, 649 (1988) ADSGoogle Scholar
  30. Setare, M.R.: Phys. Lett. B 641, 130 (2006a) MathSciNetADSMATHCrossRefGoogle Scholar
  31. Setare, M.R.: Phys. Lett. B 642, 1 (2006b) MathSciNetADSMATHCrossRefGoogle Scholar
  32. Setare, M.R., Shafei, S.: J. Cosmol. Astropart. Phys. 0609, 011 (2006) ADSCrossRefGoogle Scholar
  33. Setare, M.R.: J. Cosmol. Astropart. Phys. 0701, 023 (2007) MathSciNetADSCrossRefGoogle Scholar
  34. Setare, M.R., Zhang, J., Zhang, X.: J. Cosmol. Astropart. Phys. 0703, 007 (2007) ADSCrossRefGoogle Scholar
  35. Setare, M.R., Vagenas, E.C.: Phys. Lett. B 666, 111 (2008) MathSciNetADSCrossRefGoogle Scholar
  36. Sharif, M., Zubair, M.: Astrophys. Space Sci. 330, 399 (2010) ADSMATHCrossRefGoogle Scholar
  37. Sharif, M., Khanum, F.: Gen. Relativ. Gravit. 43, 2885 (2011a) MathSciNetADSMATHCrossRefGoogle Scholar
  38. Sharif, M., Khanum, F.: Astrophys. Space Sci. 334, 209 (2011b) ADSMATHCrossRefGoogle Scholar
  39. Sharif, M., Jawad, A.: Astrophys. Space Sci. 337, 789 (2012) ADSMATHCrossRefGoogle Scholar
  40. Sharif, M., Saleem, R.: Mod. Phys. Lett. A 27, 1250187 (2012a) ADSCrossRefGoogle Scholar
  41. Sharif, M., Saleem, R.: Int. J. Mod. Phys. D 21, 1250046 (2012b) ADSCrossRefGoogle Scholar
  42. Vollick, D.N.: Phys. Rev. D 78, 063524 (2008) MathSciNetADSCrossRefGoogle Scholar
  43. Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan

Personalised recommendations