Astrophysics and Space Science

, Volume 345, Issue 1, pp 155–167 | Cite as

Eigenfrequencies of rotationally and tidally distorted white dwarf models of stars

Original Article


In the present paper we have studied the eigenfrequencies of small adiabatic barotropic pseudo-radial and nonradial modes of oscillations of the white dwarf models of rotating stars in binary systems. In this work the methodology of Mohan and Saxena (in Astrophys. Space Sci. 113:155, 1985) has been used that utilizes the averaging technique of Kippenhahn and Thomas (in Proc. IAU Colloq., vol. 4, p. 20, 1970) and certain results on Roche equipotential as that given by Kopal (in Advances in Astronomy and Astrophysics, Academic Press, 1972). The objective of this study is to investigate the effects of rotation and/or tidal distortion on the periods of oscillations of rotationally and/or tidally distorted white dwarf models of stars assuming it to be the primary component of the binary system and rotating uniformly. The results of present study show that the eigenfrequencies (both radial and nonradial modes) of the rotationally distorted and rotationally and tidally distorted white dwarf model of stars in binary systems tend to decrease under the influence of rotational distortions and rotational and tidal distortions, respectively. However, results are contrary for tidally distorted white dwarf model of stars.


Binaries: close Stars: oscillations Stars: rotation White dwarfs 


  1. Althaus, L.G., Corsico, A.H., Isern, J., Garcia-Berro, E.: Astron. Astrophys. Rev. 18, 471 (2010) ADSCrossRefGoogle Scholar
  2. Baglin, A., Schatzman, E.: Low-Luminosity Stars, p. 385. Gordon and Breach, New York (1969) Google Scholar
  3. Brassard, P., Fontaine, G., Wesemael, F., Tassoul, M.: Astrophys. J. Suppl. Ser. 81, 747 (1992) ADSCrossRefGoogle Scholar
  4. Chandrasekhar, S., Lebovitz, N.R.: Astrophys. J. 140, 1517 (1964) ADSCrossRefGoogle Scholar
  5. Chelbowski, T.: Acta Astron. Astronomica 28, 441 (1978) ADSGoogle Scholar
  6. Degregoria, A.J.: Astrophys. J. 217, 175 (1977) ADSCrossRefGoogle Scholar
  7. Domiciano de Souza, A., Kervella, P., Jankov, S., Abe, L., Vakili, F., di Folco, E., Paresce, F.: Astron. Astrophys. 407, 47 (2003) CrossRefGoogle Scholar
  8. Durney, B.R.: Nature 219, 20 (1968) ADSCrossRefGoogle Scholar
  9. Fontaine, G., Brassard, P.: Publ. Astron. Soc. Pac. 120, 1043 (2008) ADSCrossRefGoogle Scholar
  10. Fuller, J., Lai, D.: Mon. Not. R. Astron. Soc. 412, 1331 (2011) ADSGoogle Scholar
  11. Gribbin, J.R.: Appl. Phys. Lett. 4, 77 (1969a) Google Scholar
  12. Gribbin, J.R.: Mon. Not. R. Astron. Soc. 144, 549 (1969b) ADSGoogle Scholar
  13. Hansen, B.M.S., Leibert, J.: Annu. Rev. Astron. Astrophys. 41, 465 (2003) ADSCrossRefGoogle Scholar
  14. Harper, R.V.R., Rose, W.K.: Astrophys. J. 162, 963 (1970) ADSCrossRefGoogle Scholar
  15. Horn, H.M.V., Richardson, M.B., Hansen, C.J.: Astrophys. J. 172, 181 (1972) ADSCrossRefGoogle Scholar
  16. Hurley, M., Roberts, P.H., Wright, K.: Astrophys. J. 143, 535 (1966) MathSciNetADSCrossRefGoogle Scholar
  17. Kippenhahn, R., Thomas, H.C.: A simple method for the solution of the stellar structure equation including rotation and tidal forces, stellar rotation. In: Slettebak, A.D. (ed.) Proceedings of IAU Colloq, Ohio State Univ, Columbus, vol. 4, p. 20. Gordon and Breach, New York (1970) Google Scholar
  18. Koester, D.: Astron. Astrophys. Rev. 11, 33 (2002) ADSCrossRefGoogle Scholar
  19. Kopal, Z.: Advances in Astronomy and Astrophysics, vol. 9, p. 1. Academic Press, New York (1972) Google Scholar
  20. Kumar, T.: Mathematical modeling of rotationally and tidally distorted pulsating white dwarfs stars. M.Sc. Thesis, Thapar University, Patiala, Punjab, India (2010) Google Scholar
  21. Lal, A.K.: Structure oscillations and stability of differentially rotating and tidally distorted stellar models. Ph.D. Thesis, University of Roorkee, Roorkee, India (1993) Google Scholar
  22. Lal, A.K., Mohan, C., Singh, V.P.: Astrophys. Space Sci. 301, 51 (2006) ADSCrossRefGoogle Scholar
  23. Mohan, C., Agarwal, S.R.: Astrophys. Space Sci. 129, 73 (1987) ADSCrossRefGoogle Scholar
  24. Mohan, C., Saxena, R.M.: Astrophys. Space Sci. 113, 155 (1985) ADSCrossRefGoogle Scholar
  25. Mohan, C., Saxena, R.M., Agarwal, S.R.: Astrophys. Space Sci. 178, 89 (1991) ADSCrossRefGoogle Scholar
  26. Mohan, C., Lal, A.K., Singh, V.P.: Indian J. Pure Appl. Math. 29(2), 199 (1998) MATHGoogle Scholar
  27. Osaki, Y., Hansen, C.J.: Astrophys. J. 185, 277 (1973) ADSCrossRefGoogle Scholar
  28. Ostriker, J.P., Tassoul, J.L.: Astrophys. J. 155, 987 (1969) ADSCrossRefGoogle Scholar
  29. Papaloizou, P., Pringle, J.E.: Mon. Not. R. Astron. Soc. 182, 423 (1978) ADSMATHGoogle Scholar
  30. Popper, D.M., Plavec, M.: Astrophys. J. 205, 462 (1976) ADSCrossRefGoogle Scholar
  31. Roxburgh, I.W., Durney, B.R.: Z. Astrophys. 64, 504 (1966) ADSGoogle Scholar
  32. Sauvenier-Goffin, E.: Ann. Astrophys. 12, 39 (1949) MathSciNetADSGoogle Scholar
  33. Saxena, R.M.: The effects of rotation and tidal distortions on the structure and periods of small oscillations of gaseous spheres. Ph.D. Thesis, University of Roorkee, Roorkee, India (1984) Google Scholar
  34. Schatzman, E.: Ann. Astrophys. 24, 237 (1961) ADSGoogle Scholar
  35. Singh, K.: Nonradial oscillations of gaseous spheres. Ph.D. Thesis, University of Roorkee, Roorkee, India (1976) Google Scholar
  36. Singh, H.P.: Astron. Astrophys. 259, 155 (1992) ADSGoogle Scholar
  37. Singh, H.P., Das, M.K.: Astrophys. Space Sci. 186, 117 (1991) ADSCrossRefGoogle Scholar
  38. Spruit, H.C.: Astron. Astrophys. 349, 189 (1999) ADSGoogle Scholar
  39. Spruit, H., Phinney, E.S.: Nature 393, 139 (1998) ADSCrossRefGoogle Scholar
  40. Tassoul, M., Fontaine, G., Winget, D.E.: Astrophys. J. Suppl. Ser. 72, 335 (1990) ADSCrossRefGoogle Scholar
  41. Winget, D.E., Kepler, S.D.: Annu. Rev. Astron. Astrophys. 46, 157 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Arvind Kumar Lal
    • 1
  • Tarun Kumar
    • 2
  • Ankush Pathania
    • 1
  1. 1.School of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia
  2. 2.Vidya Sagar College of Management and TechnologyPatialaIndia

Personalised recommendations