Astrophysics and Space Science

, Volume 341, Issue 2, pp 295–299 | Cite as

Life-bearing primordial planets in the solar vicinity

  • N. Chandra Wickramasinghe
  • Jamie Wallis
  • Daryl H. Wallis
  • Rudolph E. Schild
  • Carl H. Gibson
Original Article

Abstract

The space density of life-bearing primordial planets in the solar vicinity may amount to ∼8.1×104 pc−3 giving total of ∼1014 throughout the entire galactic disk. Initially dominated by H2 these planets are stripped of their hydrogen mantles when the ambient radiation temperature exceeds 3 K as they fall from the galactic halo to the mid-plane of the galaxy. The zodiacal cloud in our solar system encounters a primordial planet once every 26 My (on our estimate) thus intercepting an average mass of 103 tonnes of interplanetary dust on each occasion. If the dust included microbial material that originated on Earth and was scattered via impacts or cometary sublimation into the zodiacal cloud, this process offers a way by which evolved genes from Earth life could become dispersed through the galaxy.

Keywords

Primordial planets Panspermia HGD cosmology Solid hydrogen Comets Star formation 

References

  1. Allen, C.W.: Astrophysical Quantities. Althone Press, London (1963) Google Scholar
  2. Burchell, M.J., Mann, J., Bunch, A.W., Brandao, P.F.B.: Survivability of bacteria in hypervelocity impacts. Icarus 152, 545–547 (2001) ADSCrossRefGoogle Scholar
  3. Burchell, M.J., Mann, M.J., Bunch, A.W.: Mon. Not. R. Astron. Soc. Lett. 352, 1273 (2004) ADSCrossRefGoogle Scholar
  4. Cassan, A., Kuhas, D., Beaulieu, J.P., et al.: One or more bound planets per milky way star from microlensing observations. Nature 481, 167–169 (2012) ADSCrossRefGoogle Scholar
  5. Galleti, S., Federici, L., Bellazzini, M., Fusi Pecci, F., Macrina, S.: 2MASS NIR photometry for 693 candidate globular clusters in M31 and the revised bologna catalogue. Astron. Astrophys. 416, 917 (2004) ADSCrossRefGoogle Scholar
  6. Gibson, C.H.: Turbulence in the ocean, atmosphere, galaxy and universe. Appl. Mech. Rev. 49(5), 299–315 (1996) ADSCrossRefGoogle Scholar
  7. Gibson, C.H., Schild, R.E.: Clumps of hydrogenous planetoids as the dark matter of galaxies (1996). arXiv:astro-ph/0008335v2
  8. Gibson, C.H., Schild, R.E.: Appl. Fluid Mech. 2(2), 35–41 (2009). arXiv:0808.3228 Google Scholar
  9. Gibson, C.H., Schild, R.E., Wickramasinghe, N.C.: The origin of life from primordial planets. Int. J. Astrobiol. 10(2), 83–98 (2011) CrossRefGoogle Scholar
  10. Hoyle, F., Wickramasinghe, N.C.: Condensation of the planets. Nature 217, 415–418 (1968) ADSCrossRefGoogle Scholar
  11. Hoyle, F., Wickramasinghe, N.C., Reddish, V.C.: Solid hydrogen and the microwave background. Nature 218, 1124–1126 (1968) ADSCrossRefGoogle Scholar
  12. Hurley, J.R., Sharma, M.M.: Free-floating planets in stellar clusters: not so surprising. Astrophys. J. 565, 1251–1256 (2002) ADSCrossRefGoogle Scholar
  13. Kwok, S., Zhang, Y.: Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared features. Nature 470, 80–83 (2011) ADSCrossRefGoogle Scholar
  14. Lin, C.Y., Gilbert, A.T.B., Walker, M.A.: Interstellar solid hydrogen. Astrophys. J. 730, 91 (2011) ADSCrossRefGoogle Scholar
  15. Melosh, H.J.: Impact Cratering: A Geologic Process. Oxford University Press, New York (1989) Google Scholar
  16. Napier, W.M.: A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. Lett. 348, 46–51 (2004) ADSCrossRefGoogle Scholar
  17. Pfenniger, D., Puy, D.: Possible flakes of molecular hydrogen in the early universe. Astron. Astrophys. 398, 447–454 (2003) ADSCrossRefGoogle Scholar
  18. Schild, R.: Microlensing variability of the gravitationally lensed quasar Q0957+561A,B. Astrophys. J. 464, 125–130 (1996) ADSCrossRefGoogle Scholar
  19. Solomon, P.M., Wickramasinghe, N.C.: Molecular and solid hydrogen in interstellar clouds. Astrophys. J. 158, 449–460 (1969) ADSCrossRefGoogle Scholar
  20. Sumi, T., Kamiya, K., Bennett, D.P., et al.: Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473, 349 (2011) ADSCrossRefGoogle Scholar
  21. Valtonen, M.J., Innanen, K.A.: The capture of interstellar comets. Astrophys. J. 255, 307–315 (1982) ADSCrossRefGoogle Scholar
  22. Van de Hulst, H.C.: The solid particles in interstellar space. Rech. Astron. Obs. Utrecht 11, 2 (1949) Google Scholar
  23. Wallis, M.K., Wickramasinghe, N.C.: Interstellar transfer of planetary microbiota. Mon. Not. R. Astron. Soc. Lett. 348, 52–61 (2004) ADSCrossRefGoogle Scholar
  24. Wickramasinghe, N.C., Kwok, S.: Post-biology vs pre-biology. J. Cosmol. 16 (2012) Google Scholar
  25. Wickramasinghe, N.C., Reddish, V.C.: Accretion of solid hydrogen mantles by graphite in OB associations. Nature 218, 661–662 (1968) ADSCrossRefGoogle Scholar
  26. Wickramasinghe, J.T., Wickramasinghe, N.C., Napier, W.M.: Comets and the Origin of Life. World Scientific, Singapore (2010) Google Scholar
  27. Wesson, P.S.: Panspermia past and present: astrophysical and biophysical conditions for the dissemination of life in space. Space Sci. Rev. 156(1–4), 239–252 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • N. Chandra Wickramasinghe
    • 1
  • Jamie Wallis
    • 2
  • Daryl H. Wallis
    • 1
  • Rudolph E. Schild
    • 3
  • Carl H. Gibson
    • 1
    • 4
  1. 1.Buckingham Centre for AstrobiologyThe University of BuckinghamBuckinghamUK
  2. 2.School of MathematicsCardiff UniversityCardiffUK
  3. 3.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  4. 4.University of California San DiegoLa JollaUSA

Personalised recommendations