Advertisement

Astrophysics and Space Science

, Volume 341, Issue 2, pp 301–307 | Cite as

Two-stream approximation for rapid modeling the light pollution levels in local atmosphere

  • Miroslav Kocifaj
Original Article

Abstract

The two-stream concept is used for modeling the radiative transfer in Earth’s atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge’s and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A,lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.

Keywords

Light pollution Atmospheric effects Methods: numerical Radiative transfer Scattering 

Notes

Acknowledgements

This work was partially supported by the Scientific Grant Agency VEGA (grant No. 2/0002/12).

References

  1. Aubé, M., Kocifaj, M.: Mon. Not. R. Astron. Soc. (2012, in press) Google Scholar
  2. Aubé, M., Franchomme-Fossé, L., Robert-Staehler, P., Houle, V.: Light pollution modeling and detection in a heterogeneous environment: toward a night time aerosol optical depth retrieval method. Proc. SPIE 2005, 5890 (2005) ADSGoogle Scholar
  3. Bohren, C.F., Clothiaux, E.E.: Fundamentals of Atmospheric Radiation. Wiley-VCH, Weinheim (2006) CrossRefGoogle Scholar
  4. Bukowiecki, N., Kittelson, D.B., Watts, W.F., Burtscher, H., Weingartner, E., Baltensperger, U.: J. Aerosol Sci. 33, 1139 (2002) CrossRefGoogle Scholar
  5. Buseck, P.R., Pósfai, M.: Proc. Natl. Acad. Sci. USA 96, 3372 (1999) ADSCrossRefGoogle Scholar
  6. Cinzano, P.: Mem. Soc. Astron. Ital. Suppl. 71, 239 (2000) ADSGoogle Scholar
  7. Cinzano, P., Falchi, F.: Mon. Not. R. Astron. Soc. (2012, in press) Google Scholar
  8. Greenwald, T.J., Stephens, G.L.: Application of a doubling-adding radiation model to visibility problems. Final report, CIRA, Colorado State University, Foothills Campus, Fort Collins Colorado 80523 (1988) Google Scholar
  9. Gushchin, G.P.: The Methods, Instrumentation and Results of Atmospheric Spectral Measurements. Gidrometeoizdat, Leningrad (1988) Google Scholar
  10. Guyon, P., Boucher, O., Graham, B., Beck, J., Mayol-Bracero, O.L., Roberts, G.C., Maenhaut, W., Artaxo, P., Andreae, M.O.: J. Aerosol Sci. 34, 883 (2003) CrossRefGoogle Scholar
  11. Horvath, H., Kasahara, M., Pesava, P.: J. Aerosol Sci. 27, 417 (1996) CrossRefGoogle Scholar
  12. Horvath, H., Alados Arboledas, L., Olmo, F.J., Jovanović, O., Gangl, M., Kaller, W., Sánchez, C., Sauerzopf, H., Seidl, S.: J. Geophys. Res. 107, 4386 (2002) CrossRefGoogle Scholar
  13. ILV: International Lighting Vocabulary, CIE No. 17.4 (1987) Google Scholar
  14. Jiménez-Aquino, J.I., Varela, J.R.: Rev. Mex. Fis. 51, 82 (2005) Google Scholar
  15. Joseph, J.H., Kaufman, Y.J., Mekler, Y.: Appl. Opt. 30, 3047 (2001) ADSCrossRefGoogle Scholar
  16. Kerola, D.X.: Mon. Not. R. Astron. Soc. 365, 1295 (2006) ADSCrossRefGoogle Scholar
  17. Kocifaj, M., Horvath, H., Hrvol̆, J.: Atmos. Environ. 40, 1935 (2006) CrossRefGoogle Scholar
  18. Lacis, A.A., Mishchenko, M.I.: Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric aerosols. In: Charlson, R.L., Heintzenberg, J. (eds.) Aerosol Forcing of Climate. Wiley, New York (1994) Google Scholar
  19. Lagrosas, N., Yoshii, Y., Kuze, H., Takeuchi, N., Naito, S., Sone, A., Kan, H.: Atmos. Environ. 38, 3885 (2004) CrossRefGoogle Scholar
  20. Lata, K.M., Badarinath, K.V.S., Rao, T.V.R., Reddy, R.R., Ahammed, Y.N., Gopal, K.R., Azeem, P.A.: J. Quant. Spectrosc. Radiat. Transf. 78, 257 (2003) ADSCrossRefGoogle Scholar
  21. Lenoble, J.: Atmospheric Radiative Transfer. A. Deepak Publ., Hampton (1993) Google Scholar
  22. Luginbuhl, C.B., Lockwood, G.W., Davis, D.R., Pick, K., Selders, J.: Publ. Astron. Soc. Pac. 121, 185 (2009) ADSCrossRefGoogle Scholar
  23. Lyamani, H., Olmo, F.J., Alcántra, A., Alados-Arboledas, L.: Atmos. Environ. 40, 6453 (2006) CrossRefGoogle Scholar
  24. Markel, V.A., Shalaev, V.M.: J. Quant. Spectrosc. Radiat. Transf. 63, 321 (1999) ADSCrossRefGoogle Scholar
  25. Min, Q., Duan, M.: J. Quant. Spectrosc. Radiat. Transf. 87, 243 (2004) ADSCrossRefGoogle Scholar
  26. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002) Google Scholar
  27. Pesava, P., Horvath, H., Kasahara, M.: J. Aerosol Sci. 32, 1249 (2001) CrossRefGoogle Scholar
  28. Ramachandran, S., Jayaraman, A.: Atmos. Environ. 37 1941 (2003) CrossRefGoogle Scholar
  29. Shaiganfar, R., Beirle, S., Sharma, M., Chauhan, A., Singh, R.P., Wagner, T.: Atmos. Chem. Phys. 11, 10871 (2011) ADSCrossRefGoogle Scholar
  30. Shettle, E.P., Weinman, J.A.: J. Atmos. Sci. 27, 1048 (1970) ADSCrossRefGoogle Scholar
  31. Tuch, Th., Brand, P., Wichmann, H.E., Heyder, J.: Atmos. Environ. 31, 4193 (1997) CrossRefGoogle Scholar
  32. Volten, H., Muñoz, O., Rol, E., de Haan, J.F., Vassen, W., Hovenier, J.W.: J. Geophys. Res. 106, 17375 (2001) ADSCrossRefGoogle Scholar
  33. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York (1982) Google Scholar
  34. Zuev, V.E., Krekov, G.M.: Optical Models of the Atmosphere. Gidrometeoizdat, Leningrad (1986) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Astronomical InstituteSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations