Advertisement

Astrophysics and Space Science

, Volume 339, Issue 1, pp 7–12 | Cite as

“Dark energy” in the Local Void

  • M. Villata
Letter to the Editor

Abstract

The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

Keywords

Gravitation Cosmology: theory Dark energy Large-scale structure of Universe 

References

  1. Aaronson, M., Huchra, J., Mould, J., Schechter, P.L., Tully, R.B.: Astrophys. J. 258, 64 (1982) ADSCrossRefGoogle Scholar
  2. Amendola, L.: Mon. Not. R. Astron. Soc. 312, 521 (2000) ADSCrossRefGoogle Scholar
  3. Benoit-Lévy, A., Chardin, G.: Astron. Astrophys. 537, A78 (2012) ADSCrossRefGoogle Scholar
  4. Cabbolet, M.J.T.F.: Ann. Phys. 522, 699 (2010) CrossRefGoogle Scholar
  5. Cai, R., Tuo, Z.: (2012). arXiv:1109.0941v5
  6. Capozziello, S., Cardone, V.F., Troisi, A.: Phys. Rev. D, Part. Fields 71, 043503 (2005) ADSCrossRefGoogle Scholar
  7. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D, Part. Fields 70, 043528 (2004) ADSCrossRefGoogle Scholar
  8. Chardin, G.: Nucl. Phys. A 558, 477 (1993) ADSCrossRefGoogle Scholar
  9. Chardin, G.: Hyperfine Interact. 109, 83 (1997) ADSCrossRefGoogle Scholar
  10. Chardin, G., Rax, J.-M.: Phys. Lett. B 282, 256 (1992) ADSCrossRefGoogle Scholar
  11. Cramer, J.G.: Phys. Rev. D, Part. Fields 22, 362 (1980) MathSciNetADSCrossRefGoogle Scholar
  12. Davies, P.C.W.: J. Phys. A, Math. Gen. 8, 272 (1975) ADSCrossRefGoogle Scholar
  13. Dutta, S., Maor, I.: Phys. Rev. D, Part. Fields 75, 063507 (2007) ADSCrossRefGoogle Scholar
  14. Dvali, G., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Erdoğdu, P., Huchra, J.P., Lahav, O., et al.: Mon. Not. R. Astron. Soc. 368, 1515 (2006) ADSCrossRefGoogle Scholar
  16. Faber, S.M., Burstein, D.: In: Rubin, V.C., Coyne, G.V. (eds.) Large-Scale Motions in the Universe: A Vatican Study Week, pp. 115–167 (1988) Google Scholar
  17. Fixsen, D.J., Cheng, E.S., Gales, J.M., et al.: Astrophys. J. 473, 576 (1996) ADSCrossRefGoogle Scholar
  18. Good, M.L.: Phys. Rev. 121, 311 (1961) MathSciNetADSCrossRefGoogle Scholar
  19. Hajdukovic, D.S.: Int. J. Theor. Phys. 49, 1023 (2010) zbMATHCrossRefGoogle Scholar
  20. Hajdukovic, D.S.: Adv. Astron. 2011, 196852 (2011a) CrossRefGoogle Scholar
  21. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 219 (2011b) ADSzbMATHCrossRefGoogle Scholar
  22. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011c) ADSzbMATHCrossRefGoogle Scholar
  23. Hoffman, G.L., Salpeter, E.E.: Astrophys. J. 263, 485 (1982) ADSCrossRefGoogle Scholar
  24. Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Astrophys. J. Suppl. Ser. 192, 14 (2011) ADSCrossRefGoogle Scholar
  25. Kashlinsky, A., Atrio-Barandela, F., Ebeling, H., Edge, A., Kocevski, D.: Astrophys. J. 712, L81 (2010) ADSCrossRefGoogle Scholar
  26. Kocevski, D.D., Ebeling, H.: Astrophys. J. 645, 1043 (2006) ADSCrossRefGoogle Scholar
  27. Lynden-Bell, D., Faber, S.M., Burstein, D., et al.: Astrophys. J. 326, 19 (1988) ADSCrossRefGoogle Scholar
  28. Mohayaee, R., Tully, R.B.: Astrophys. J. 635, L113 (2005) ADSCrossRefGoogle Scholar
  29. Morrison, P.: Am. J. Phys. 26, 358 (1958) ADSCrossRefGoogle Scholar
  30. Ni, G.-J.: In: Dvoeglazov, V.V., Espinoza Garrido, A.A. (eds.) Relativity, Gravitation, Cosmology, pp. 123–136 (2004) Google Scholar
  31. Nieto, M.M., Goldman, T.: Phys. Rep. 205, 221 (1991) ADSCrossRefGoogle Scholar
  32. Noyes, H.P.: Phys. Essays 21, 52 (2008) ADSCrossRefGoogle Scholar
  33. Noyes, H.P., Starson, S.: SLAC-PUB-5429 (1991) Google Scholar
  34. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993) Google Scholar
  35. Peebles, P.J.E., Nusser, A.: Nature 465, 565 (2010) ADSCrossRefGoogle Scholar
  36. Peebles, P.J.E., Tully, R.B., Shaya, E.J.: (2011). arXiv:1105.5596v1
  37. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  38. Raychaudhury, S.: Nature 342, 251 (1989) ADSCrossRefGoogle Scholar
  39. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  40. Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G., Zamorani, G.: Nature 338, 562 (1989) ADSCrossRefGoogle Scholar
  41. Schiff, L.I.: Phys. Rev. Lett. 1, 254 (1958) ADSCrossRefGoogle Scholar
  42. Schiff, L.I.: Proc. Natl. Acad. Sci. USA 45, 69 (1959) MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. Shaya, E.J.: Astrophys. J. 280, 470 (1984) ADSCrossRefGoogle Scholar
  44. Thomas, S.A., Abdalla, F.B., Lahav, O.: Phys. Rev. Lett. 106, 241301 (2011) ADSCrossRefGoogle Scholar
  45. Tonry, J.L., Blakeslee, J.P., Ajhar, E.A., Dressler, A.: Astrophys. J. 530, 625 (2000) ADSCrossRefGoogle Scholar
  46. Tonry, J.L., Davis, M.: Astrophys. J. 246, 680 (1981) ADSCrossRefGoogle Scholar
  47. Tully, R.B.: In: Rubin, V.C., Coyne, G.V. (eds.) Large-Scale Motions in the Universe: A Vatican Study Week, pp. 169–177 (1988) Google Scholar
  48. Tully, R.B., Shaya, E.J.: Astrophys. J. 281, 31 (1984) ADSCrossRefGoogle Scholar
  49. Tully, R.B., Shaya, E.J., Karachentsev, I.D., et al.: Astrophys. J. 676, 184 (2008) ADSCrossRefGoogle Scholar
  50. Tully, R.B., Shaya, E.J., Pierce, M.J.: Astrophys. J. Suppl. Ser. 80, 479 (1992) ADSCrossRefGoogle Scholar
  51. Villata, M.: Europhys. Lett. 94, 20001 (2011) ADSCrossRefGoogle Scholar
  52. Villata, M.: Astrophys. Space Sci. 337, 15 (2012) ADSCrossRefGoogle Scholar
  53. Walker, M.G., Peñarrubia, J.: Astrophys. J. 742, 20 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.INAFOsservatorio Astronomico di TorinoPino TorineseItaly

Personalised recommendations