Advertisement

Astrophysics and Space Science

, Volume 339, Issue 1, pp 165–178 | Cite as

GPS-TEC variations during low solar activity period (2007–2009) at Indian low latitude stations

  • Sanjay Kumar
  • S. Priyadarshi
  • S. Gopi Krishna
  • A. K. SinghEmail author
Original Article

Abstract

The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.

Keywords

GPS Ionospheric total electron contents Geomagnetic storm IRI model 

Notes

Acknowledgements

This work is supported partly by Ministry of Earth Sciences, New Delhi under GPS project (MoES/P.O.(Seismo)/GPS/61/2006) and partly by DST, New Delhi under SERC project. We are thankful to world data centre for geomagnetism at Kyoto University, Kyoto, Japan for providing geomagnetic data (http://swdcwww.kugi.kyto-u.ac.jp). We also thank NASA Data Center for providing us TIMED/GUVI images. We thank the ACE SWEPAM and MAG instrument teams and the ACE Science Centre for providing the ACE data. We acknowledge the international GNSS service (IGS) for providing us GPS data. We are thankful to the reviewer for sparing their time to improve the quality of the manuscript.

References

  1. Anderson, D.N., Mendillo, M., Herniter, B.: A semi-empirical low-latitude ionospheric model. Radio Sci. 22, 292 (1987) ADSCrossRefGoogle Scholar
  2. Bailey, G.J., Su, Y.Z., Balan, N.: The Sheffied University plasma sphere ionosphere model- a review. J. Atmos. Sol.-Terr. Phys. 59(13), 1541–1552 (1997) ADSCrossRefGoogle Scholar
  3. Bagiya, M.S., Joshi, H.P., Iyer, K.N., Aggarwal, M., Ravindran, S., Pathan, B.M.: TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann. Geophys. 27, 1047–1057 (2009) ADSCrossRefGoogle Scholar
  4. Bagiya, M.S., Sridharan, R.: Evolutionary phases of equatorial spread F including L band scintillations and plumes in the context of GPS total electron content variability: a case study. J. Geophys. Res. (2011). doi: 10.1029/2011JA016893 Google Scholar
  5. Bhattacharya, S., Dubey, S., Tiwari, R., Purohit, P.K., Gwal, A.K.: Effect of magnetic activity on ionospheric time delay at low latitude. J. Astrophys. Astron. 29, 269–274 (2008) ADSCrossRefGoogle Scholar
  6. Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001) ADSCrossRefGoogle Scholar
  7. Bilitza, D.: A correction for the IRI top side electron density model based on Alouette/ISIS top side sounder data. Adv. Space Res. 33, 838–843 (2004) ADSCrossRefGoogle Scholar
  8. Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42, 599–609 (2008) ADSCrossRefGoogle Scholar
  9. Booker, H.G.: Fitting of multi region ionospheric profiles of electron density by a single analytic function of height. J. Atmos. Sol.-Terr. Phys. 39, 619–623 (1977) ADSCrossRefGoogle Scholar
  10. Burton, R.K., McPherron, R.L., Russell, C.T.: An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 8204 (1975) CrossRefGoogle Scholar
  11. Chandra, H., Misra, R.K., Rastogi, R.G.: Equatorial ionospheric drift and electrojet. Planet. Space Sci. 19, 1497–1503 (1971) ADSCrossRefGoogle Scholar
  12. Chauhan, V., Singh, O.P.: A morphological study of GPS-TEC data at Agra and their comparison with the IRI model. Adv. Space Res. 46, 280–290 (2010) ADSCrossRefGoogle Scholar
  13. Chen, M.W., Schulz, M., Lyons, R.L.: Simulation of phase space distribution of storm time proton ring current. J. Geophys. Res. 99, 5745 (1994) ADSCrossRefGoogle Scholar
  14. Christensen, A.B., Paxton, L.J., Avery, S., Craven, J., Crowley, G., Humm, D.C., Kil, H., Meier, R.R., Meng, C.-I., Morrison, D., Ogorzalek, B.S., Straus, P., Strickland, D.J., Swenson, R.M., Walterscheid, R.L., Wolven, B., Zhang, Y.: Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res. 108(A12), 1451–1466 (2003). doi: 10.1029/2003JA009918 CrossRefGoogle Scholar
  15. Coisson, P., Radicella, S.M., Leitinger, R., Nava, B.: Topside electron density in IRI and NeQuick: Features and limitations. Adv. Space Res. 37(5), 937–942 (2006) ADSCrossRefGoogle Scholar
  16. Daglis, I.A., Livi, S., Sarris, E.T., Wilken, B.: Energy density of ionospheric and solar wind origin ions in the near-Earth magneto tail during substorms. J. Geophys. Res. 99, 5691 (1994) ADSCrossRefGoogle Scholar
  17. Daglis, I.A.: The role of magnetospheric-ionospheric coupling in magnetic storm dynamics in magnetic storms. In: Tsurutani, B.T., et al. (eds.) Geophys. Monogr. Ser., vol. 98, pp. 107–116. AGU, Washington (1997) Google Scholar
  18. Daniell, R.E., Brown, L.D.: PRISM, A Parameterized Real-Time Ionospheric Specification Model Version 1.5. Computational Physics Inc., Newton (1995) Google Scholar
  19. Danilov, A.D., Lastovicka, J.: Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2, 209–224 (2001) Google Scholar
  20. Dashora, N., Sharma, N., Dabas, R.S., Alex, S., Pandey, R.: Large enhancement in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone. Ann. Geophys. 27, 1803–1820 (2009) ADSCrossRefGoogle Scholar
  21. Dsagupta, A., Paul, A., Das, A.: Ionospheric Total Electron Content (TEC) studies with GPS in the equatorial region. Indian J. Radio & Space Phys. 36, 278–292 (2007) Google Scholar
  22. Davies, K., Hartmann, G.K.: Studying the ionosphere with global positioning system. Radio Sci. 32, 1695–1703 (1979) ADSCrossRefGoogle Scholar
  23. Davies, K.: Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 Radio beacon experiment. Space Sci. Rev. 25, 357–430 (1980) ADSCrossRefGoogle Scholar
  24. Fuller-Rowell, T.J., Codrescu, M.V., Moffett, R.J., Quegan, S.: Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 99, 3893–3914 (1994) ADSCrossRefGoogle Scholar
  25. Fuller-Rowell, T.J., Codrescu, M.V., Fejer, B.J., Borer, B.W., Marcos, H.: Dynamics of the low latitude thermosphere: quiet and disturbed conditions. J. Atmos. Sol.-Terr. Phys. 59, 1533–1540 (1997) ADSCrossRefGoogle Scholar
  26. Gupta, J.K., Singh, L.: Long term ionospheric electron content variations over Delhi. Ann. Geophys. 18, 1635–1644 (2000) ADSCrossRefGoogle Scholar
  27. Hocke, K., Pavelyev, A.G.: General aspect of GPS data use for atmospheric science. Adv. Space Res. 27, 1313–1320 (2001) ADSCrossRefGoogle Scholar
  28. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System, Theory and Practice, 4th edn. Springer, Berlin (1992), 389 CrossRefGoogle Scholar
  29. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice. Springer, Berlin (2001) CrossRefGoogle Scholar
  30. Kamide, Y., Yokoyama, N., Gonzales, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., Masuda, S.: Two-step development of geomagnetic storms. J. Geophys. Res. A 103(4), 6917–6921 (1998) ADSCrossRefGoogle Scholar
  31. Kane, R.P.: Irregular variations in the global distribution of total electron content. Radio Sci. 15, 837–842 (1980) ADSCrossRefGoogle Scholar
  32. Kumar, S., Singh, A.K.: Variation of ionospheric total electron content in Indian low latitude region of equatorial ionization anomaly (EIA). J. Adv. Space Res. 43, 1555–1562 (2009) ADSCrossRefGoogle Scholar
  33. Kumar, S., Singh, A.K.: Effect of geomagnetic storm on GPS-derived total electron content at Indian low latitude station. J. Phys. Conf. Ser. 208, 012062 (2010) ADSCrossRefGoogle Scholar
  34. Lin, C.H., Richmond, A.D., Hellis, R.A., Bailey, G.J., Lu, G., Liu, J.Y., Yeh, H.C., Su, S.-Y.: Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res. 110, A12312 (2005). doi: 10.1029/2005JA011304 ADSCrossRefGoogle Scholar
  35. Langley, R., Fedrizzi, M., Paula, E., Santos, M., Komjathy, A.: Mapping the low latitude ionosphere with GPS. GPS World 13(2), 41–46 (2002) Google Scholar
  36. Mannucci, A.J., Wilson, B.D., Ewards, C.D.: A new method for monitoring the Earth’s ionosphere total electron content using the GPS global network. In: Proc. of ION GPS-93, Inst. of Navigation, pp. 1323–1332 (1993) Google Scholar
  37. Mukherjee, S., Sarkar, S., Purohit, P.K., Gwal, A.K.: Seasonal variation of total electron content at crest of equatorial anomaly station during low solar activity conditions. Adv. Space Res., (2010). doi: 10.1016/j.asr.2010.03.024 Google Scholar
  38. Nava, B., Coisson, P., Radicella, S.M.: A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 70(15), 1856–1862 (2008) ADSCrossRefGoogle Scholar
  39. Nru, D., Rao Rama, P.V.S., Niranjan, K., Srirama Rao, M.: Storm time variation of TEC over Waltair. Ind. J. Radio Space Phys. 10, 31–34 (1981) Google Scholar
  40. Pandey, R., Dashora, N.: Space weather studies at the crest of the equatorial ionization anomaly using GPS receiver. Paper presented at XXVIIIth URSI General Assembly, New Delhi, India, 23–29 October 2005 Google Scholar
  41. Rama Rao, P.V.S., Srirama Rao, M., Satyam, M.: Diurnal and seasonal trends in TEC values observed at Waltair. Indian J. Radio & Space Phys. 6, 233–235 (1977) ADSGoogle Scholar
  42. Rama Rao, P.V.S., Gopi Krishna, S., Niranjan, K., Prasad, D.S.V.V.D.: Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann. Geophys. 24, 3279–3292 (2006) ADSCrossRefGoogle Scholar
  43. Rama Rao, P.V.S., Gopi Krishna, S., Vara Prasad, J., Prasad, S.N.V.S., Prasad, D.S.V.V.D., Niranjan, K.: Geomagnetic storm effects on GPS based navigation. Ann. Geophys. 27, 2101–2110 (2009) ADSCrossRefGoogle Scholar
  44. Rastogi, R.G., Iyer, K.N., Bhattacharya, J.C.: Total Electron content of the ionosphere over the magnetic equator. Curr. Sci. 44, 531–533 (1975) Google Scholar
  45. Rastogi, R.G., Klobuchar, J.A.: Ionospheric electron content within the equatorial F 2-layer anomaly belt. J. Geophys. Res. 95, 19045 (1990) ADSCrossRefGoogle Scholar
  46. Richmond, A.D.: Space weather research prompts Study of Ionosphere and upper 12 atmospheric electrodynamic. Eos Transaction AGU, pp. 77–101 (1995) Google Scholar
  47. Scherliess, L., Schunk, R.W., Sojka, J.J., Thompson, D.C., Zhu, L.: Utah State University Global Assimilation of ionospheric Measurements Gauss–Markov Kalmn filter model of the ionosphere: model description and validation. J. Geophys. Res. 111, A11315 (2006) ADSCrossRefGoogle Scholar
  48. Shastri, S., Aggarwal, S., Sethi, N.K.: Performance of IRI model prediction of F-region for Indian latitude. Adv. Space Res. 18(6), 41–44 (1996) ADSCrossRefGoogle Scholar
  49. Titheridge, J.E.: Changes in atmospheric composition inferred from ionospheric production rates. J. Atmos. Sol.-Terr. Phys. 36, 1249–1257 (1974) ADSCrossRefGoogle Scholar
  50. Trivedi, R., Jain, A., Jain, S., Gwal, A.K.: Study of TEC changes during geomagnetic storms occurred near the crest of the equatorial ionospheric ionization anomaly in the Indian sector. Adv. Space Res. 48, 1617–1630 (2011) ADSCrossRefGoogle Scholar
  51. Venkatesh, K., Rao Rama, P.V.S., Prasad, D.S.V.V.D., Niranjan, K., Saranya, P.L.: Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector. Ann. Geophys. 29, 1635–1645 (2011) ADSCrossRefGoogle Scholar
  52. Vijaya Lekshmi, D., Balan, N., Vaidyan, V.K., Alleyne, H., Bailey, G.J.: Response of the ionosphere to super geomagnetic storms: observations and modeling. Adv. Space Res. 41, 548–555 (2008) ADSCrossRefGoogle Scholar
  53. Warnant, R.: The increase of ionospheric activity as measured by GPS. Earth Planets Space 52, 1055–1060 (2000) ADSGoogle Scholar
  54. Wu, Chin-Chun, Liou, K., Shan, Shao-Ju, Tseng, C.L.: Variation of Ionospheric total Electron Content in Taiwan Region of the Equatorial Anomaly from 1994–2003. Adv. Space Res. 41, 611–616 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sanjay Kumar
    • 1
  • S. Priyadarshi
    • 1
  • S. Gopi Krishna
    • 2
  • A. K. Singh
    • 1
    Email author
  1. 1.Atmospheric Research Lab., Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.Institute for Scientific ResearchBoston CollegeChestnut HillUSA

Personalised recommendations