Astrophysics and Space Science

, Volume 337, Issue 2, pp 685–691 | Cite as

Study of Non-spinning black holes with reference to the change in energy and entropy

  • Dipo MahtoEmail author
  • Kanak Kumari
  • R. K. Sah
  • K. M. Singh
Original Article


In this research paper, we have derived the formula for both the changes in energy (δE) and entropy (δS) and thereafter calculated the change in entropy (δS) with corresponding change in energy (δE) taking account the first law of the black hole mechanics relating the change in mass M, angular momentum J, horizon area A and charge Q, of a stationary black hole, when it is perturbed, given by formula satisfying in the vacuum as \(\delta M = \frac{k}{8\pi} \delta A + \Omega\delta J - \upsilon\delta Q\), specially for Non-spinning black holes.


Horizon area Surface gravity Entropy Hawking temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161–170 (1973). doi: 10.1007/BFO1645742. MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Bekenstein, J.D.: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287–298 (1981) 4.1, 4.2 MathSciNetADSCrossRefGoogle Scholar
  3. Bekenstein, J.D.: Do We Understand Black Hole Entropy? World Scientific Press, Singapore (1996). Cited on 6 April 2001. 3 Google Scholar
  4. Bekenstein, J.D.: On page’s examples challenging the entropy bound (June, 2000). Cited on 6 April 2001. 4.2
  5. Bekenstein, J.D.: Bekenstein-Hawking entropy. Scholarpedia 3(10), 7375 (2008). doi: 10.4249/scholarpedia CrossRefGoogle Scholar
  6. Bergmann, P.G.: Introduction to the Theory of Relativity. Prentice-Hall of India, New Delhi (1969) Google Scholar
  7. Brown, J.D., York, J.W.: Microcanonical functional integral for the gravitational field. Phys. Rev. D, Part. Fields 47, 1420–1431 (1993) MathSciNetADSCrossRefGoogle Scholar
  8. Callen, C., Wilzcek, F.: On geometric entropy. Phys. Lett. B 333, 55–61 (1994). 5 MathSciNetADSCrossRefGoogle Scholar
  9. Cardoso, G.L., de Wit, B., Mohaupt, T.: Area law corrections from state counting and supergravity. Class. Quantum Gravity 17, 1007–1015 (2000). Cited on 6 April 2001. 5 ADSzbMATHCrossRefGoogle Scholar
  10. Carlips, S.: Black Hole Thermodynamics and Statistical Mechanics, vol. 769, p. 89 (2009). doi: 10.1007/978-3-540-88460-6. 3
  11. Dabholkar, A.: Black hole entropy in string theory—a window in to the quantum structure of gravity. Curr. Sci. 89(12), 25 (2005) MathSciNetGoogle Scholar
  12. Frolov, V.P., Fursaev, D.V.: Mechanism of generation of black hole. Entropy in Sakharov’s induced gravity. Phys. Rev. D, Part. Fields 56, 2212–2225 (1997) MathSciNetADSCrossRefGoogle Scholar
  13. Frolov, V.P., Fursaev, D.V., Zelnikov, A.I.: Statistical origin of black hole entropy in induced gravity. Nucl. Phys. B 486, 339–352 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Gibbons, G., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. Lett. D 15, 2752–2756 (1977) MathSciNetADSGoogle Scholar
  15. Gour, G., Mayo, A.M.: Phys. Rev. D, Part. Fields 63, 064005 (2001) ( MathSciNetADSCrossRefGoogle Scholar
  16. Hawking, S.W.: Black hole explosions? Nature 248, 30–31 (1974). doi: 10.3038/248030a0. ADSCrossRefGoogle Scholar
  17. Hawking, S.: A “Brief History of Time”. Bantam Books, New York (1998). ISBN 0-553-38016-8 Google Scholar
  18. Holzhey, C., Larsen, F., Wilzeck, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994). 5 ADSzbMATHCrossRefGoogle Scholar
  19. Horowitz, G.: Quantum states of black holes. In: Wald, R.M. (ed.) Black Holes and Relativistic Stars, pp. 241–266. University of Chicago Press, Chicago (1998). Cited on 6 April 2001. 5 Google Scholar
  20. Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamics black hole entropy. Phys. Rev. D, Part. Fields 50, 846–864 (1994) MathSciNetADSCrossRefGoogle Scholar
  21. Mukhanov, V.F.: Found. Phys. 33, 271 (2003) MathSciNetCrossRefGoogle Scholar
  22. Narayan, R.: Black holes in astrophysics (2005). arXiv:gr-qc/0506078v1
  23. Page, D.N.: Defining entropy bounds. July, 2000. Cited on April 2001. 4.2, 4.2
  24. Peet, A.: TASI lectures on black holes in string theory. August, 2000. Cited on 6 April 2001. 5
  25. Ruffini, R., Wheeler, J.A.: Phys. Today 24(12), 30 (1971) ADSCrossRefGoogle Scholar
  26. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). doi: 10.1016/0370-2693(96)00345-0 MathSciNetADSCrossRefGoogle Scholar
  27. Susskind, L.: The world as hologram. J. Math. Phys. 36, 6377–6396 (1995), cited on 6 April 2001. 3, 3 MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. ‘t Hooft, G.: On the quantization of space and time. In: Markov, M.A., Berezin, V.A., Frolov, V.P. (eds.) Quantum Gravity, pp. 551–567. World Scientific Press, Singapore (1988). 3 Google Scholar
  29. Transchen, J.: An introduction to black hole evaporation (2000). arXiv:gr-qc/0010055V1
  30. Wald, R.M.: The thermodynamics of black hole (1999). arXiv:gr-qc/9912119v2 [gr-qc]
  31. Wald, R.M.: The thermodynamics of black holes. Living reviews in relativity. (2001)

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dipo Mahto
    • 1
    Email author
  • Kanak Kumari
    • 2
  • R. K. Sah
    • 3
  • K. M. Singh
    • 1
  1. 1.Marwari CollegeBhagalpurIndia
  2. 2.Research Scholar T.M.B.U.BhagalpurIndia
  3. 3.S.S.V. College KahalgaonKahalgaonIndia

Personalised recommendations