Astrophysics and Space Science

, Volume 336, Issue 2, pp 287–302 | Cite as

The past, present and future supernova threat to Earth’s biosphere

Invited Review

Abstract

A brief review of the threat posed to Earth’s biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ∼10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (∼2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth’s biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall between 150 and 300-pc—again, affording no possible threat to Earth’s biosphere. Temporally, the next most likely, close, potential Type Ic supernova to the Sun is the Wolf-Rayet star within the γ2 Velorum binary system located at least 260-pc away. It is suggested that evidence relating to large-scale astroengineering projects might fruitfully be looked for in those regions located within 10 to 30-pc of any pre-supernova candidate system.

Keywords

Supernova Supernova hazard Gamma-ray bursts (GRB) Stars: IK Pegasi α-Orionis (Betelgeuse) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albritton, C.C.: Catastrophic Episodes in Earth History. Chapman & Hall, London (1989) Google Scholar
  2. Althaus, L.G., Garcia-Berro, E., Isern, J., Corsico, A.H.: Astron. Astrophys. 441, 689–694 (2005) ADSCrossRefGoogle Scholar
  3. Althaus, L.G., Garcia-Berro, E., Isern, J., Corsico, A.H., Rohrmann, R.D.: Astron. Astrophys. 465, 249–255 (2007) ADSCrossRefGoogle Scholar
  4. Annis, J.: JBIS. J. Br. Interplanet. Soc. 52, 19–22 (1999) ADSGoogle Scholar
  5. Arbutina, B.: Astron. Space. Sci. 7, 271–274 (2007) Google Scholar
  6. Bailer-Jones, C.A.L.: Mon. Not. R. Astron. Soc. 416, 1163–1180 (2011) ADSCrossRefGoogle Scholar
  7. Barstow, M.A., Holberg, J.B., Koester, D.: Mon. Not. R. Astron. Soc. Lett. 270, 516–522 (1994) Google Scholar
  8. Bartunov, O.S., Tsvetkov, D.Yu., Pavlyuk, N.N.: Highlights Astron. 14, 316–323 (2006) ADSGoogle Scholar
  9. Basu, S., Stuart, F.M., Schnabel, C., Klemm, V.: Phys. Rev. Lett. 98, 141103–141107 (2007) ADSCrossRefGoogle Scholar
  10. Batten, A.H., Fletcher, J.M., MacCarthy, D.G.: Pub. Dom. Astro. Obs. 17 (1989) Google Scholar
  11. Bednarek, W., Pabich, J.: Astron. Astrophys. 530, A49 (2011) ADSCrossRefGoogle Scholar
  12. Beech, M.: Rejuvenating the Sun and Avoiding other Global Disasters. Springer, New York (2008) Google Scholar
  13. Beech, M.: Terraforming: the Creating of Habitable Worlds. Springer, New York (2009) Google Scholar
  14. Benitez, N., Maiz-Apellaniz, J., Canelles, M.: Phys. Rev. Lett. 88, 81101–81105 (2002) ADSCrossRefGoogle Scholar
  15. Bishop, S., Egli, R.: Icarus 212, 960–966 (2011) ADSCrossRefGoogle Scholar
  16. Bizzarro, M., Ulfbeck, D., Trinquier, A., Thrane, K., Connelly, J.N., Meyer, B.S.: Science 316, 1178–1181 (2007) ADSCrossRefGoogle Scholar
  17. Boffin, H.M.J.: Astron. Astrophys. 524, A14 (2010) ADSCrossRefGoogle Scholar
  18. Bonnet, R.-M., Woltjer, L.: Surviving 1,000 Centuries—Can We do It? Springer, New York (2008) CrossRefGoogle Scholar
  19. Brakenridge, G.R.: Icarus 215, 101–106 (2011) ADSCrossRefGoogle Scholar
  20. Briceno, C.: Handbook of Star Forming Regions (B. Reipurth, Ed). Astronomical Society of the Pacific, San Francisco (2008) Google Scholar
  21. Brown, A.G.A., De Geus, E.J., de Zeeuw, P.T.: Astron. Astrophys. 289, 101–120 (1994) ADSGoogle Scholar
  22. Caldeira, K., Kasting, J.F.: Nature 360, 721–722 (1992) ADSCrossRefGoogle Scholar
  23. Carlton, A.K., et al.: arXiv:1106.4498 v1 (2011)
  24. Cha, A.N., Sembach, K.R., Danks, K.R.: Astrophys. J. 515, L25–L28 (1999) ADSCrossRefGoogle Scholar
  25. Clark, D.H., Stephenson, F.R.: Historical Supernovae. Pergamon, Oxford (1977) Google Scholar
  26. Clark, D.H., McCrea, W.H., Stephenson, F.R.: Nature 265, 318–319 (1977) ADSCrossRefGoogle Scholar
  27. Cockell, C.S.: Int. J. Astrobiol. 1, 31–38 (2002) Google Scholar
  28. Eggleton, P.P.: Astrophys. J. 268, 368–369 (1983) ADSCrossRefGoogle Scholar
  29. Eggleton, P.P., Fitchett, M.J., Tout, C.A.: Astrophys. J. 347, 998–1011 (1989) (EFT89) ADSCrossRefGoogle Scholar
  30. Ellis, J., Schramm, D.N.: Proc. Natl. Acad. Sci. USA 92, 235–238 (1995) ADSCrossRefGoogle Scholar
  31. Falk, S.W.: Astrophys. J. 225, L133–L126 (1978) ADSCrossRefGoogle Scholar
  32. Fields, B.D., Athanassiadou, T., Johnson, S.R.: Astrophys. J. 678, 549–562 (2008) ADSCrossRefGoogle Scholar
  33. Fitoussi, C., et al.: Phys. Rev. Lett. 101, 121101–121104 (2008) ADSCrossRefGoogle Scholar
  34. Flower, P.J.: Astrophys. J. 469, 355–365 (1996) ADSCrossRefGoogle Scholar
  35. Fogg, M.: JBIS. J. Br. Interplanet. Soc. 44, 183–192 (1991) ADSGoogle Scholar
  36. Franck, S., Bounama, C., von Bloh, W.: Biogeosci. Discuss. 2, 1665–1679 (2005) ADSCrossRefGoogle Scholar
  37. Fryer, C.L., et al.: Publ. Astron. Soc. Pac. 119, 1211–1232 (2007) ADSCrossRefGoogle Scholar
  38. Gies, D.R., Helsel, J.W.: Astrophys. J. 626, 844–848 (2005) ADSCrossRefGoogle Scholar
  39. Gehrels, N., Chen, W.: Nature 361, 706 (1993) ADSCrossRefGoogle Scholar
  40. Georgy, C., Meynet, G., Walder, R., Folini, D., Maeder, A.: Astron. Astrophys. 502, 611–622 (2009) ADSCrossRefGoogle Scholar
  41. Gonzalez, S.F., Warman, B.J., Pena, J.H.: Astron. J. 85, 1361–1365 (1980) ADSCrossRefGoogle Scholar
  42. Gowanlock, M.G., Patton, D.R., McConnell, S.M.: arXiv:1107.1286 v1 (2011)
  43. Hakkila, J., Pierce, J.N.: Comments Astrophys. 15, 9–17 (1990) ADSGoogle Scholar
  44. Hallam, T.: Catastrophes and Lesser Calamities—the Causes of Mass Extinctions. OUP, Oxford (2005) Google Scholar
  45. Harding, S.: Animate Earth: Science, Intuition and Gaia. A Sciencewriters Book. Chelsea Green Publishing, Vermont (2006) Google Scholar
  46. Harper, G.M., Brown, A., Guinan, E.F.: Astrophys. J. 135, 1430–1440 (2008) ADSGoogle Scholar
  47. Haubois, X., et al.: Astron. Astrophys. 508, 923–932 (2009) ADSCrossRefGoogle Scholar
  48. Hill, G.A.: Bull. Am. Astron. Soc. 41, 475 (2009) ADSGoogle Scholar
  49. Hillebrandt, W., Niemeyer, J.C.: Annu. Rev. Astron. Astrophys. 38, 191–230 (2000) ADSCrossRefGoogle Scholar
  50. Hockey, T., Trimble, V.: The Observatory 130, 167–172 (2010) ADSGoogle Scholar
  51. Hunt, G.E.: Nature 271, 430–431 (1978) ADSCrossRefGoogle Scholar
  52. Iben, I. Jr., Livio, M.: Publ. Astron. Soc. Pac. 105, 1373–1406 (1993) ADSCrossRefGoogle Scholar
  53. Kasting, J.F.: Icarus 74, 472–494 (1988) ADSCrossRefGoogle Scholar
  54. Kervella, P., et al.: Astron. Astrophys. A117 (2011) Google Scholar
  55. Kippenhahn, R.: Astron. Astrophys. 102, 293–295 (1981) ADSGoogle Scholar
  56. Klein, R.I., Chevalier, R.A.: Astrophys. J. 223, L109–L112 (1978) ADSCrossRefGoogle Scholar
  57. Knie, K., Korschinek, G., Faestermann, T., Wallner, C., Scholten, J., Hillebrandt, W.: Phys. Rev. Lett. 83, 18–21 (1999) ADSCrossRefGoogle Scholar
  58. Kurtz, D.W.: Astrophys. J. 221, 869–880 (1978) ADSCrossRefGoogle Scholar
  59. Landsman, W., Simon, T., Bergeron, P.: Publ. Astron. Soc. Pac. 105, 841–847 (1993) ADSCrossRefGoogle Scholar
  60. Leitch, E.M., Vasisht, G.: New Astron. 3, 51–56 (1998) ADSCrossRefGoogle Scholar
  61. Lineweaver, C.H., Fenner, Y., Gibson, B.K.: Science 303, 59–62 (2004) ADSCrossRefGoogle Scholar
  62. Lovelock, J.E.: JBIS. J. Br. Interplanet. Soc. 42, 583–586 (1989) ADSGoogle Scholar
  63. Lovelock, J.E.: The Revenge of Gaia. Allen Lane, London (2006) Google Scholar
  64. Lovelock, J.E., Kump, L.R.: Nature 369, 732–734 (1994) ADSCrossRefGoogle Scholar
  65. Lovelock, J.E., Whitfield, M.: Nature 296, 561–563 (1982) ADSCrossRefGoogle Scholar
  66. Martin, O., Galante, D., Cardenas, R., Horvath, J.E.: Astrophys. Space Sci. 321, 161–167 (2009) ADSCrossRefGoogle Scholar
  67. Martin, O., Cardenas, R., Guimarals, M., Horvath, J.E., Galante, D.: Astrophys. Space Sci. 326, 61–67 (2010) ADSCrossRefGoogle Scholar
  68. Melott, A., and 8 co-authors: Int. J. Astrobiol. 3, 55–61 (2004) CrossRefGoogle Scholar
  69. Mihalas, D., Binney, J.: Galactic Astronomy: Structure and Kinematics, p. 229. Freeman, San Francisco (1981) Google Scholar
  70. Nelemans, G., Tout, C.: Mon. Not. R. Astron. Soc. Lett. 356, 753–764 (2005) ADSCrossRefGoogle Scholar
  71. Paczynski, B.: Acta Aston. 20, 47–58 (1970) ADSGoogle Scholar
  72. Parthasarathy, M., Branch, D., Jeffrey, D.J., Baron, E.: New Astron. Rev. 51, 524–538 (2007) ADSCrossRefGoogle Scholar
  73. Pellizza, L.J., Mignami, R.P., Grenier, I.A., Mirabel, I.F.: Astron. Astrophys. 435, 625–630 (2005) ADSCrossRefGoogle Scholar
  74. Penate, L., Martin, O., Cardenas, R., Agusti, S.: Astrophys. Space Sci. 326, 211–217 (2010) ADSCrossRefGoogle Scholar
  75. Podsiadlowski, Ph., Mazzali, P.A., Nomoto, K., Lazzati, D., Cappellaro, E.: Astrophys. J. 607, L17–L20 (2004) ADSCrossRefGoogle Scholar
  76. Potter, A.T., Tout, A.T.: Mon. Not. R. Astron. Soc. Lett. 402, 1072–1080 (2009) Google Scholar
  77. Reynolds, S.P., and 6 co-authors, Astrophys. J. Lett. 680, L41–L44 (2008) ADSCrossRefGoogle Scholar
  78. Richardson, D., Branch, D., Casebeer, D., Millard, J., Thomas, R.C., Baron, E.: Astron. J. 123, 745–752 (2002) ADSCrossRefGoogle Scholar
  79. Ruderman, M.A.: Science 184, 1079–1081 (1974) ADSCrossRefGoogle Scholar
  80. Salvati, M., Sacco, B.: Astron. Astrophys. 485, 527–529 (2008) ADSCrossRefGoogle Scholar
  81. Scalo, J., Wheeler, J.C.: Astrophys. J. 566, 723–737 (2002) ADSCrossRefGoogle Scholar
  82. Schaefer, B., Pagnotta, A., Shara, M.M.: Astrophys. J. 708, 381–402 (2010) ADSCrossRefGoogle Scholar
  83. Selvelli, P., Cassatella, A., Gilmozzi, R., Gonzalez-Riestra, R.: Astron. Astrophys. 492, 787–803 (2008) ADSCrossRefGoogle Scholar
  84. Shaviv, N.J.: New Astron. 8, 39–77 (2003) ADSCrossRefGoogle Scholar
  85. Smalley, B., Smith, K.C., Wonnacott, D., Allen, C.S.: Mon. Not. R. Astron. Soc. Lett. 278, 688–696 (1996) Google Scholar
  86. Smith, N.: Astron. J. 133, 1034–1040 (2007) ADSCrossRefGoogle Scholar
  87. Smith, R.C.: The Observatory 103, 29–31 (1983) ADSGoogle Scholar
  88. Sokal, K.R., Skinner, S.L., Zhekov, S.A., Gudel, M., Schmutz, W.: Astrophys. J. 715, 1327–1337 (2010) ADSCrossRefGoogle Scholar
  89. Sokoloski, J.L., Luna, G.J., Mukai, K., Kenyon, S.J.: Nature 442, 276–278 (2006) ADSCrossRefGoogle Scholar
  90. Tegmark, M., Bostrom, N.: Nature 438, 754 (2005) ADSCrossRefGoogle Scholar
  91. Terry, K.D., Tucker, W.H.: Science 159, 421–423 (1968) ADSCrossRefGoogle Scholar
  92. Thomas, B.C., and 10 co-authors: Astrophys. J. 634, 509–533 (2005) ADSCrossRefGoogle Scholar
  93. Tuchman, Y., Glasner, A., Barkat, Z.: Astrophys. J. 268, 356–360 (1983) ADSCrossRefGoogle Scholar
  94. Tuthill, P.G., Monnier, J.D., Lawrance, N., Danchi, W.C., Owocki, S.P., Gayley, K.G.: Astrophys. J. 675, 698–710 (2008) ADSCrossRefGoogle Scholar
  95. Uthas, H., Knigge, C., Steeghs, D.: Mon. Not. R. Astron. Soc. Lett. 409, 237–246 (2010) ADSCrossRefGoogle Scholar
  96. van den Bergh, S., Tammann, G.: Annu. Rev. Astron. Astrophys. 29, 363–407 (1991) ADSCrossRefGoogle Scholar
  97. van der Hucht, K.: New Astron. Rev. 45, 135–232 (2001) ADSCrossRefGoogle Scholar
  98. Vennes, S., Christian, D.J., Thorstensen, J.R.: Astrophys. J. 502, 763–787 (1998) ADSCrossRefGoogle Scholar
  99. Williams, D.M., Pollard, D.: Int. J. Astrobiol. 2, 1–19 (2003) CrossRefGoogle Scholar
  100. Wilson, R.E.: General Catalog of Stellar Radial Velocities. Carnegie Institute, Washington (1953) Google Scholar
  101. Wonnacott, D., Kellett, B.J., Smalley, B., Lloyd, C.: Mon. Not. R. Astron. Soc. Lett. 267, 1045–1052 (1994) ADSGoogle Scholar
  102. Wonnacott, D., Kellett, B.J., Stickland, D.J.: Mon. Not. R. Astron. Soc. Lett. 262, 277–284 (1993) Google Scholar
  103. Wood, A.J., Ackland, G.J., Dyke, J.G., Williamns, H.T.P., Lenton, T.M.: Rev. Geophys. 46, RG1001 (2008) ADSCrossRefGoogle Scholar
  104. Woodwell, G.M.: Science 156, 461–470 (1967) ADSCrossRefGoogle Scholar
  105. Woosley, S.E.: 2010. arXiv:1105.4193
  106. Woosley, S.E., Bloom, J.S.: Annu. Rev. Astron. Astrophys. 44, 507–556 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Campion CollegeThe University of ReginaSaskatchewanCanada

Personalised recommendations