Astrophysics and Space Science

, Volume 335, Issue 2, pp 619–627 | Cite as

Dark matter as seen from the physical point of view

Original Article

Abstract

It is shown that the Newton’s law of universal gravitation can be derived from first submicroscopic principles inherent in the very nature of real space that is constituted as a tessel-lattice of primary topological balls. The submicroscopic concept determines the notion of mass in the tessel-lattice and introduces excitations of space, which appear at the motion of particles (mass particles are determined as local deformations of the tessel-lattice). These excitations are associated with carriers of the field of inertia. In the universe the gravitation is induced by standing inerton waves of mass objects, which oscillate around the objects with the speed of light. An overlapping of these standing inerton waves generates an elastic interaction between masses bringing them to a formation of clusters in which masses are characterized by both the Newtonian and elastic interaction. It is this elastic interaction that cancels the necessity of introduction of mystical dark matter. At the same time, inertons, carriers of inert properties of objects, can be treated as an analogous of hypothetic weakly interacting massive particles (WIMP) or axions, which some astronomers try to associated with dark matter particles.

Keywords

Dark matter Clusters of galaxies Gravitation Space Tessel-lattice Inertons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begeman, K.G., Broeils, A.H.: Mon. Not. R. Astron. Soc. 249, 523 (1991) ADSGoogle Scholar
  2. Bliokh, P.V., Minakov, A.A.: Gravitational Lenses. Naukova Dumka, Kyiv (1989) (in Russian) Google Scholar
  3. Bounias, M., Krasnoholovets, V.: Kybernetes 32, 945 (2003a). arXiv:physics/0211096 MathSciNetMATHCrossRefGoogle Scholar
  4. Bounias, M., Krasnoholovets, V.: Kybernetes 32, 976 (2003b). arXiv:physics/0212004 MathSciNetCrossRefGoogle Scholar
  5. Bounias, M., Krasnoholovets, V.: Kybernetes 32, 1005 (2003c). arXiv:physics/0301049 MathSciNetCrossRefGoogle Scholar
  6. Bounias, M., Krasnoholovets, V.: Int. J. Anticipat. Comput. Syst. 16, 3 (2004). arXiv:physics/0309102 Google Scholar
  7. Clowe, D., Gonzalez, A., Markevich, M.: Astrophys. J. 604, 596 (2004) ADSCrossRefGoogle Scholar
  8. De Broglie, L.: Les Insertitudes d’Hesenberg et L’interprétation Probabiliste de la Méchanique Ondulatoire. Gausier-Villars Bordas, Paris (1982), Ch. 1 Google Scholar
  9. De Broglie, L.: Ann. Fond. Louis Broglie 12, 399 (1987) Google Scholar
  10. Fort, B., Mellier, Y.: Astron. Astrophys. Rev. 5, 239 (1994) ADSCrossRefGoogle Scholar
  11. Krasnoholovets, V.: Phys. Essays 10, 407 (1997). arXiv:quant-ph/9903077 ADSCrossRefGoogle Scholar
  12. Krasnoholovets, V.: Hadronic J. Suppl. 18, 425 (2003). arXiv:physics/0501132 Google Scholar
  13. Krasnoholovets, V.: In: Duffy, M., Levy, J., Krasnoholovets, V. (eds.) Ether Spacetime and Cosmology, vol. 1, p. 419. PD Publications, Liverpool (2008). arXiv:1104.5270v1 (physics.gen-ph) Google Scholar
  14. Krasnoholovets, V.: In: Duffy, M.C., Levy, J. (eds.) Ether Space-Time and Cosmology. New Insights into a Key Physical Medium, vol. 2, p. 417 (2009); C. Roy Keys Inc. Apeiron; also: Apeiron 16, 418. http://redshift.vif.com/JournalFiles/V16NO3PDF/V16N3KRA.pdf Google Scholar
  15. Krasnoholovets, V.: In: Amoroso, R.L., Rowlands, P., Jeffers, S. (eds.) Search for Fundamental Theory. The VIIth Int. Symposium Honoring French Mathematical Physicist Jean-Pear Vigier, 12–14 July 2010, London, UK (vol. 1316, p. 2010). Melville, New York (2010a). American Inst. Phys. Conf. Proc., 244. doi:10.1063/1.3536437 Google Scholar
  16. Krasnoholovets, V.: 2011, accepted Google Scholar
  17. Krasnoholovets, V., Ivanovsky, D.: Phys. Essays 6, 554 (1993). arXiv:quant-ph/9910023 ADSCrossRefGoogle Scholar
  18. Krasnoholovets, V., Kukhtarev, N., Kukhtareva, T.: Int. J. Mod. Phys. B 20, 2323 (2006). arXiv:0911.2361 (quant-ph) ADSCrossRefGoogle Scholar
  19. Krasnoholovets, V., Lev, B.: Condens. Matter Phys. 6, 67 (2003). arXiv:cond-mat/0210131 Google Scholar
  20. Krasnoholovets, V., Tane, J.-L.: Int. J. Simul Process Model. 2, 67 (2006). arXiv:physics/0605094 Google Scholar
  21. Massey, R., Rhodes, J., Ellis, R., Scoville, N., Leauthaud, A., Finoguenov, A., Capak, P., Bacon, D., Aussel, H., Kneib, J.-P., Koekemoer, A., McCracken, H., Mobasher, B., Pires, S., Refregier, A., Sasaki, S., Starck, J.-L., Taniguch, Y., Taylor, A., Taylor, J.: Nature 445, 286–290 (2007). doi:10.1038/nature05497 ADSCrossRefGoogle Scholar
  22. McGauph, S.S.: Phys. Rev. Lett. 106, 121303 (2011). arXiv:1102.3913 (astro-ph.CO) ADSCrossRefGoogle Scholar
  23. Milgrom, M.: Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  24. Milgrom, A.: Astrophys. J. 698, 1630 (2009). arXiv:0810.4065 (astro-phys.) ADSCrossRefGoogle Scholar
  25. Mortlock, D.J., Turne, E.L.: Mon. Not. R. Astron. Soc. 327, 557 (2001) ADSCrossRefGoogle Scholar
  26. Poincaré, H.: Compt. Rendus 140, 1504 (1905); 1906, Rendiconti del Circolo matematico di Palermo 21, 129, also: Oeuvres, t. IX, pp. 494–550 (and also in Russian translation: 1974, Selected Transactions, N.N. Bogolubov (Ed.), Nauka, Moscow, vol. 3, p. 429) MATHGoogle Scholar
  27. Sanders, R.H.: Mon. Not. R. Astron. Soc. 342, 901 (2003) ADSCrossRefGoogle Scholar
  28. Sanders, R.H.: Adv. Astron. 2009, 752439 (2009) 9 pages. doi:10.1155/2009/752439 CrossRefGoogle Scholar
  29. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses. Springer, Berlin (1992) CrossRefGoogle Scholar
  30. Zwicky, F.: Helv. Phys. Acta 6, 110 (1933) ADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Indra Scientific SABrusselsBelgium

Personalised recommendations