Astrophysics and Space Science

, Volume 334, Issue 2, pp 219–223 | Cite as

Do we live in the universe successively dominated by matter and antimatter?

Letter

Abstract

We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter.

Keywords

Cyclic universe Antimatter gravity Big bang Big crunch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, I.J.R.: Nothing’s plenty—The vacuum in modern quantum field theory. Contemp. Phys. 50, 261–319 (2009) ADSCrossRefGoogle Scholar
  2. Benoit-Levy, A., Chardin, G.: Do we live in a “Dirac-Milne” universe? arXiv:0903.2446v1 (2009)
  3. Chardin, G., Rax J.M: CP violation, a matter of (anti)gravity? Phys. Lett. B 282, 256 (1992) ADSCrossRefGoogle Scholar
  4. Chardin, G.: CP violation and antigravity. Nucl. Phys. A 558, 477–495 (1993) ADSCrossRefGoogle Scholar
  5. Chardin, G.: Motivations for antigravity in General Relativity. Hyperfine Interact. 109, 83–94 (1997) ADSCrossRefGoogle Scholar
  6. Friedman, A.: Über die Krümmung des Raumes. Z. Phys. 10, 377–386 (1922) English translation in: Friedman, A. (1999). On the curvature of space. Gen. Relativ. Gravit. 31: 1991–2000 ADSCrossRefGoogle Scholar
  7. Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999) ADSCrossRefGoogle Scholar
  8. Gilson, J.G.: A dust universe solution to the dark energy problem. arXiv:physics/0512166v4 (2009)
  9. Good, M.L.: \(K_{L}^{0}\) and the equivalence principle. Phys. Rev. 121, 311 (1961) ADSCrossRefMathSciNetGoogle Scholar
  10. Greiner, W., Müller, B., Rafaelski, B.J.: Quantum Electrodynamics of Strong Fields. Springer, Berlin (1985) Google Scholar
  11. Hajdukovic, D.S.: Can the new neutrino telescopes reveal the gravitational properties of antimatter? arXiv:0710.4316v4 (2007) (to appear in Advances in Astronomy)
  12. Hajdukovic, D.S.: What would be outcome of a big crunch. Int. J. Theor. Phys. 49, 1023 (2010a) MATHCrossRefGoogle Scholar
  13. Hajdukovic, D.S.: Dark energy, antimatter gravity and geometry of the Universe. Astrophys. Space Sci. 330, 1 (2010b) ADSMATHCrossRefGoogle Scholar
  14. Hajdukovic, D.S.: On the vacuum fluctuations, pioneer anomaly and modified Newtonian dynamics. Astrophys. Space Sci. 330, 207 (2010c) ADSCrossRefGoogle Scholar
  15. Hajdukovic, D.S.: Is dark matter an illusion created by the gravitational polarization of the quantum vacuum. Astrophys. Space Sci. (2011). doi:10.1007/s10509-011-0744-4
  16. Kellerbauer, A., et al..: AEGIS Proto-Collaboration, Proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Instrum. Methods Phys. Res. B 266, 351 (2008) ADSCrossRefGoogle Scholar
  17. Linde, A.: Inflationary cosmology. In: Lect. Notes Phys., vol. 738, pp. 1–54. Springer, Berlin (2008) CrossRefGoogle Scholar
  18. Luongo, O., Quevedo, H.: Toward an invariant definition of repulsive gravity. arXiv:1005.4532v1 (2010)
  19. Morrison, P.: Approximate nature of physical symmetries. Am. J. Phys. 26, 358–368 (1958) ADSCrossRefGoogle Scholar
  20. Nakamura, K., Petcov, S.T.: Neutrino mass, mixing, and oscillations. J. Phys. G 37, 164–183 (2010) CrossRefGoogle Scholar
  21. Nieto, M.M., Goldman, T: The arguments against “antigravity” and the gravitational acceleration of antimatter. Phys. Rep. 205, 221 (1991) ADSCrossRefGoogle Scholar
  22. Novello, M., Perez Bergliaffa, S.E.: Bouncing cosmologies. Phys. Rep. 463, 127–213 (2008) ADSCrossRefMathSciNetGoogle Scholar
  23. Noyes, H.P.: On “Dark energy from antimatter by Walter R. Lamb”. Phys. Essays 21, 52–56 (2008) ADSCrossRefGoogle Scholar
  24. Preti, G., de Felice, F.: Light cones and repulsive gravity. Am. J. Phys. 76, 671–676 (2008) ADSCrossRefGoogle Scholar
  25. Roos, M.: Introduction to Cosmology. Wiley, West Sussex (2003) Google Scholar
  26. Ruffini, R., et al.: Electron-positron pairs in physics and astrophysics. Phys. Rep. 487, 1–140 (2010) ADSCrossRefGoogle Scholar
  27. Schiff, L.I.: Sign of the gravitational mass of a positron. Phys. Rev. Lett. 1, 254–255 (1958) ADSCrossRefGoogle Scholar
  28. Schiff, L.I.: Gravitational properties of antimatter. Proc. Natl. Acad. Sci. USA 45, 69–80 (1959) ADSMATHCrossRefMathSciNetGoogle Scholar
  29. Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951) ADSMATHCrossRefMathSciNetGoogle Scholar
  30. Villata, M.: CPT symmetry and antimatter gravity in general relativity. Europhys. Lett. 94, 20001 (2011) ADSCrossRefGoogle Scholar
  31. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.PH Division CERNGeneva 23Switzerland

Personalised recommendations