Astrophysics and Space Science

, Volume 336, Issue 1, pp 207–211 | Cite as

Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility

  • C. C. Kuranz
  • H.-S. Park
  • B. A. Remington
  • R. P. Drake
  • A. R. Miles
  • H. F. Robey
  • J. D. Kilkenny
  • C. J. Keane
  • D. H. Kalantar
  • C. M. Huntington
  • C. M. Krauland
  • E. C. Harding
  • M. J. Grosskopf
  • D. C. Marion
  • F. W. Doss
  • E. Myra
  • B. Maddox
  • B. Young
  • J. L. Kline
  • G. Kyrala
  • T. Plewa
  • J. C. Wheeler
  • W. D. Arnett
  • R. J. Wallace
  • E. Giraldez
  • A. Nikroo
Original Article

Abstract

The National Ignition Facility (NIF) is capable of creating new and novel high-energy-density (HED) systems relevant to astrophysics. Specifically, a system could be created that studies the effects of a radiative shock on a hydrodynamically unstable interface. These dynamics would be relevant to the early evolution after a core-collapse supernova of a red supergiant star. Prior to NIF, no HED facility had enough energy to perform this kind of experiment. The experimental target will include a 340 μm predominantly plastic ablator followed by a low-density SiO2 foam. The interface will have a specific, machined pattern that will seed hydrodynamic instabilities. The growth of the instabilities in a radiation-dominated environment will be observed. This experiment requires a ≥300 eV hohlraum drive and will be diagnosed using point projection pinhole radiography, which have both been recently demonstrated on NIF.

Keywords

Laboratory astrophysics National Ignition Facility Radiation hydrodynamics Hydrodynamic instability Radiative shocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D., Fryxell, B., Muller, E.: Instabilities and nonradial motion in SN 1987A. Astrophys. J. Lett. 341(2), 63–66 (1989) ADSCrossRefGoogle Scholar
  2. Drake, R.P., Leibrandt, D.R., Harding, E.C., Kuranz, C.C., Blackburn, M.A., Robey, H.F., Remington, B.A., Edwards, M.J., Miles, A.R., Perry, T.S., Wallace, R., Louis, H., Knauer, J., Arnett, D.: Nonlinear mixing behavior of the three-dimensional Rayleigh-Taylor instability at a decelerating interface. Phys. Plasmas 11(5), 2829–2837 (2004) ADSCrossRefGoogle Scholar
  3. Dewald, E.L., Campbell, K.M., Turner, R.E., Holder, J.P., Landen, O.L., Glenzer, S.H., Kauffman, R.L., Suter, L.J., Landon, M., Rhodes, M., Lee, D.: Rev. Sci. Instrum. 75 (2004) Google Scholar
  4. Falk, S.W., Arnett, D.: Astrophys. J. Suppl. Ser. 33, 515 (1977) ADSCrossRefGoogle Scholar
  5. Fransson, C.: Comptonization and UV emission-lines from type-II supernovae. Astron. Astrophys. 133(2), 264–284 (1984) ADSGoogle Scholar
  6. Fransson, C., Lundqvist, P., Chevalier, R.: Circumstellar interaction in SN 1993J. Astrophys. J. 461(2), 993–1008 (1996). Part 1 ADSCrossRefGoogle Scholar
  7. Fryxell, B., Muller, E., Arnett, D.: Instabilities and clumping in SN 1987A. I. Early evolution in two dimensions. Astrophys. J. 367, 619–34 (1991) ADSCrossRefGoogle Scholar
  8. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computering method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974) ADSMATHCrossRefGoogle Scholar
  9. Huntington, C.M., Krauland, C., Kuranz, C.C., Drake, R.P., Park, H.-S., Kalantar, D.H., MacPhee, A.G., Remington, B.A., Kline, J.: Short duration backlit pinhole for radiography diagnostics on the national ignition facility. Rev. Sci. Inst. 71, 10E536 (2010) CrossRefGoogle Scholar
  10. Kane, J., Arnett, D., Remington, B.A., Glendinning, S.G., Castor, J., Wallace, R., Rubenchik, A., Fryxell, B.A.: Supernova-relevant hydrodynamic instability experiments on the Nova laser. Astrophys. J. 478, 75–78 (1997) ADSCrossRefGoogle Scholar
  11. Kifonidis, K., Plewa, T., Janka, H.-T., Muller, E.: Nucleosynthesis and clump formation in a core-collapse supernova. Astrophys. J. Lett. 531(2), 123–126 (2000) ADSCrossRefGoogle Scholar
  12. Kifonidis, K., Plewa, T., Janka, H.T., Muller, E.: Non-spherical core collapse supernovae—II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN1987A. Astron. Astrophys. 453(2), 661 (2006) ADSCrossRefGoogle Scholar
  13. Kornblum, H.N., Kauffman, R.L., Smith, J.A.: Rev. Sci. Instrum. 57, 2179 (1986) ADSCrossRefGoogle Scholar
  14. Kuranz, C., Drake, R., Harding, E., Grosskopf, M., Robey, H., Remington, B., Edwards, M., Miles, A., Perry, T., Blue, B., Plewa, T., Hearn, N., Knauer, J., Arnett, D., Leibrandt, D.: Two-dimensional blast-wave-driven Rayleigh-Taylor instability: Experiment and simulation. Astrophys. J. 696(1), 749–759 (2009a). doi:10.1088/0004-637X/696/1/74 ADSCrossRefGoogle Scholar
  15. Kuranz, C., Drake, R., Grosskopf, M., Budde, A., Krauland, C., Marion, D., Visco, A., Ditmar, J., Robey, H., Remington, B., Miles, A., Cooper, A., Sorce, C., Plewa, T., Hearn, N., Killebrew, K., Knauer, J., Arnett, D., Donajkowski, T.: Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes. Phys. Plasmas 16(5) (2009b). doi:10.1063/1.309932
  16. Larsen, J.T., Lane, S.M.: HYADES: a plasma hydrodynamics code for dense plasma studies. J. Quant. Spectrosc. Radiat. Transf. 51(1), 179–186 (1994) ADSCrossRefGoogle Scholar
  17. Meshkov, E.E.: Sov. Fluid Dyn. 4, 101 (1969) MathSciNetADSCrossRefGoogle Scholar
  18. Muller, E., Fryxell, B., Arnett, D.: Instabilities and Clumping in SN 1987A. Astron. Astrophys. 251, 505–514 (1991) ADSGoogle Scholar
  19. Nymark, T., Fransson, C., Kozma, C.: X-ray emission from radiative shocks in type II supernovae. Astron. Astrophys. 449(1), 171–192 (2006). doi:10.1051/0004-6361:2005416 ADSCrossRefGoogle Scholar
  20. Rayleigh, L.: Scientific Papers II. Cambridge University Press, Cambridge (1900) MATHGoogle Scholar
  21. Richtmyer, D.H.: Commun. Pure Appl. Math. 13, 297 (1960) MathSciNetCrossRefGoogle Scholar
  22. Robey, H.F., Kane, J.O., Remington, B.A., Drake, R.P., Hurricane, O.A., Louis, H., Wallace, R.J., Knauer, J., Keiter, P., Arnett, D., Ryutov, D.D.: An experimental testbed for the study of hydrodynamic issues in supernovae. Phys. Plasmas 8, 2446–2453 (2001) ADSCrossRefGoogle Scholar
  23. Taylor, S.G.: Hydrodynamic Instabilities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 201, 192 (1950) ADSMATHCrossRefGoogle Scholar
  24. Zimmerman, G.B., Kruer, W.L.: Comments Plasma Phys. Control. Fusion 2, 885 (1975) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. C. Kuranz
    • 1
  • H.-S. Park
    • 2
  • B. A. Remington
    • 2
  • R. P. Drake
    • 1
  • A. R. Miles
    • 2
  • H. F. Robey
    • 2
  • J. D. Kilkenny
    • 3
  • C. J. Keane
    • 2
  • D. H. Kalantar
    • 2
  • C. M. Huntington
    • 1
  • C. M. Krauland
    • 1
  • E. C. Harding
    • 1
  • M. J. Grosskopf
    • 1
  • D. C. Marion
    • 1
  • F. W. Doss
    • 1
  • E. Myra
    • 1
  • B. Maddox
    • 2
  • B. Young
    • 2
  • J. L. Kline
    • 4
  • G. Kyrala
    • 4
  • T. Plewa
    • 5
  • J. C. Wheeler
    • 6
  • W. D. Arnett
    • 7
  • R. J. Wallace
    • 2
  • E. Giraldez
    • 3
  • A. Nikroo
    • 3
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.General AtomicsSan DiegoUSA
  4. 4.Los Alamos National LaboratoryLos AlamosUSA
  5. 5.Florida State UniversityTallahasseeUSA
  6. 6.University of TexasAustinUSA
  7. 7.University of ArizonaTucsonUSA

Personalised recommendations